SLVSDM5F September   2017  – March 2020 TLV7011 , TLV7012 , TLV7021 , TLV7022

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      X2SON Package vs SC70 and US Dime
      2.      Propagation Delay vs. Overdrive
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
    2.     Pin Functions: TLV7012/22
  6. Specifications
    1. 6.1  Absolute Maximum Ratings (Single)
    2. 6.2  Absolute Maximum Ratings (Dual)
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions (Single)
    5. 6.5  Recommended Operating Conditions (Dual)
    6. 6.6  Thermal Information (Single)
    7. 6.7  Thermal Information (Dual)
    8. 6.8  Electrical Characteristics (Single)
    9. 6.9  Switching Characteristics (Single)
    10. 6.10 Electrical Characteristics (Dual)
    11. 6.11 Switching Characteristics (Dual)
    12. 6.12 Timing Diagrams
    13. 6.13 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Inputs
      2. 7.4.2 Internal Hysteresis
      3. 7.4.3 Output
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Inverting Comparator With Hysteresis for TLV701x
      2. 8.1.2 Noninverting Comparator With Hysteresis for TLV701x
    2. 8.2 Typical Applications
      1. 8.2.1 Window Comparator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 IR Receiver Analog Front End
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
      3. 8.2.3 Square-Wave Oscillator
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Evaluation Module
    2. 11.2 Related Links
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Inverting Comparator With Hysteresis for TLV701x

The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator supply voltage (VCC), as shown in Figure 33. When VIN at the inverting input is less than VA, the output voltage is high (for simplicity, assume VO switches as high as VCC). The three network resistors can be represented as R1 || R3 in series with R2. Equation 1 defines the high-to-low trip voltage (VA1).

Equation 1. TLV7011 TLV7021 TLV7012 TLV7022 q_va1_bos561.gif

When VIN is greater than VA, the output voltage is low, very close to ground. In this case, the three network resistors can be presented as R2 || R3 in series with R1. Use Equation 2 to define the low to high trip voltage (VA2).

Equation 2. TLV7011 TLV7021 TLV7012 TLV7022 q_va2_bos561.gif

Equation 3 defines the total hysteresis provided by the network.

Equation 3. TLV7011 TLV7021 TLV7012 TLV7022 q_delta_va_bos561.gif
TLV7011 TLV7021 TLV7012 TLV7022 ai_inverting_bos561.gifFigure 33. TLV701x in an Inverting Configuration With Hysteresis