SBVS382A December   2020  – March 2023 TLV766-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Output Enable
      2. 7.3.2 Dropout Voltage
      3. 7.3.3 Foldback Current Limit
      4. 7.3.4 Undervoltage Lockout (UVLO)
      5. 7.3.5 Output Pulldown
      6. 7.3.6 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device Functional Mode Comparison
      2. 7.4.2 Normal Operation
      3. 7.4.3 Dropout Operation
      4. 7.4.4 Disabled
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Adjustable Device Feedback Resistors
      2. 8.1.2 Recommended Capacitor Types
      3. 8.1.3 Input and Output Capacitor Requirements
      4. 8.1.4 Reverse Current
      5. 8.1.5 Feed-Forward Capacitor (CFF)
      6. 8.1.6 Power Dissipation (PD)
      7. 8.1.7 Estimating Junction Temperature
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Transient Response
        2. 8.2.2.2 Choose Feedback Resistors
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Examples
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Device Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Feed-Forward Capacitor (CFF)

For the adjustable-voltage version device, a feed-forward capacitor (CFF) can be connected from the OUT pin to the FB pin. CFF improves transient, noise, and PSRR performance, but is not required for regulator stability. Recommended CFF values are listed in the Recommended Operating Conditions table. A higher capacitance CFF can be used; however, the startup time increases. For a detailed description of CFF tradeoffs, see the Pros and Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator application report.

CFF and R1 form a zero in the loop gain at frequency fZ, while CFF, R1, and R2 form a pole in the loop gain at frequency fP. CFF zero and pole frequencies can be calculated from the following equations:

Equation 4. fZ = 1 / (2 × π × CFF × R1)
Equation 5. fP = 1 / (2 × π × CFF × (R1 || R2))

CFF ≥ 10 pF is required for stability if the feedback divider current is less than 5 µA. Equation 6 calculates the feedback divider current.

Equation 6. IFB_Divider = VOUT / (R1 + R2)

To avoid startup time increases from CFF, limit the product CFF × R1 < 50 µs.

For an output voltage of 0.8 V with the FB pin tied to the OUT pin, no CFF is used.