SNOSD29E December   2016  – April 2018 TLV8541 , TLV8542 , TLV8544

UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Low Power PIR Motion Detector
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
    1.     Pin Functions: TLV8541 DBV
    2.     Pin Functions: TLV8542 D & RUG
    3.     Pin Functions: TLV8544 PW & D
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 Rail-To-Rail Input
      2. 8.4.2 Supply Current Changes Over Common Mode
      3. 8.4.3 Design Optimization With Rail-To-Rail Input
      4. 8.4.4 Design Optimization for Nanopower Operation
      5. 8.4.5 Common-Mode Rejection
      6. 8.4.6 Output Stage
      7. 8.4.7 Driving Capacitive Load
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application: Battery-Powered Wireless PIR Motion Detectors
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Calculation of the Cutoff Frequencies and Gain of Stage A:
        2. 9.2.2.2 Calculation of the Cutoff Frequencies and Gain of Stage B
        3. 9.2.2.3 Calculation of the Total Gain of Stages A and B
        4. 9.2.2.4 Window Comparator Stage
        5. 9.2.2.5 Reference Voltages
      3. 9.2.3 Application Curve
    3. 9.3 Typical Application: 60-Hz Twin T Notch Filter
      1. 9.3.1 Design Requirements
      2. 9.3.2 Detailed Design Procedure
      3. 9.3.3 Application Curve
    4. 9.4 Dos and Don'ts
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 Community Resources
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

TA = 25°C, VS = 1.8 V to 3.3 V, VCM = VOUT = VS / 2, and RL≥ 10 MΩ to VS / 2, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OFFSET VOLTAGE
VOS Input offset voltage VCM = V– , VS = 1.8 V and 3.3 V –3.1 See Plots 3.1 mV
VCM = V+, VS = 1.8 V and 3.3 V –3.4 See Plots 3.4
dVOS/dT Input offset drift VCM = V–, TA = –40°C to 125°C 0.8 µV/°C
PSRR Power-supply rejection ratio VCM = V– , VS =1.8 V and 3.3 V 66 90 dB
INPUT VOLTAGE RANGE
VCM Common-mode voltage range VS = 3.3 V 0 3.3 V
CMRR Common-mode rejection ratio (V–) ≤ VCM ≤ (V+), Vs = 3.3 V 60 80 dB
(V–) ≤ VCM ≤ (V+) – 1.2 V 90
INPUT BIAS CURRENT
IB Input bias current 100 fA
IOS Input offset current 100 fA
INPUT IMPEDANCE
Differential 2 pF
Common mode 4 pF
NOISE
En Input voltage noise ƒ = 0.1 Hz to 10 Hz 8.6 µVp–p
en Input voltage noise density ƒ = 1 kHz 264 nV/√Hz
OPEN-LOOP GAIN
AOL Open-loop voltage gain (V–) + 0.3 V ≤ VO ≤ (V+) – 0.3 V, RL = 100 kΩ to V+/2 120 dB
OUTPUT
VOH Voltage output swing from positive rail RL = 100 kΩ to V+/2, VS = 3.3 V 12 mV
VOL Voltage output swing from negative rail RL = 100 kΩ to V+/2, VS = 3.3 V 12 mV
ISC Short-circuit current Sourcing, VO to V–, VIN(diff) = 100 mV, VS = 3.3 V 15 mA
Sinking, VO to V+, VIN(diff) = –100 mV, VS = 3.3 V 30
ZO Open loop output impedance ƒ = 1 kHz, IO = 0 mA 8
FREQUENCY RESPONSE
GBP Gain-bandwidth product CL = 20 pF, RL = 10 MΩ 8 kHz
SR Slew rate (10% to 90%) G = 1, rising edge, CL = 20 pF 3.5 V/ms
G = 1, falling edge, CL = 20 pF 4.5
POWER SUPPLY
IQ–TLV8541 Quiescent Current VCM = V–, IO = 0 mA, VS = 3.3 V 550 640 nA
IQ–TLV8542 Quiescent Current, per channel VCM = V–, IO = 0 mA, VS = 3.3 V 550 640 nA
IQ–TLV8544 Quiescent current, per channel VCM = V–, IO = 0 mA, VS = 3.3 V 500 640 nA