SNVSCI2B February   2023  – February 2024 TLVM23615 , TLVM23625

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 System Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range
      2. 7.3.2  Output Voltage Selection
      3. 7.3.3  Input Capacitors
      4. 7.3.4  Output Capacitors
      5. 7.3.5  Enable, Start-Up, and Shutdown
      6. 7.3.6  Switching Frequency (RT)
      7. 7.3.7  Power-Good Output Operation
      8. 7.3.8  Internal LDO, VCC and VOUT/FB Input
      9. 7.3.9  Bootstrap Voltage and VBOOT-UVLO (BOOT Terminal)
      10. 7.3.10 Soft Start and Recovery from Dropout
        1. 7.3.10.1 Recovery from Dropout
      11. 7.3.11 Overcurrent Protection (Hiccup Mode)
      12. 7.3.12 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
        1. 7.4.3.1 CCM Mode
        2. 7.4.3.2 Auto Mode – Light-Load Operation
          1. 7.4.3.2.1 Diode Emulation
          2. 7.4.3.2.2 Frequency Reduction
        3. 7.4.3.3 FPWM Mode – Light-Load Operation
        4. 7.4.3.4 Minimum On-Time (High Input Voltage) Operation
        5. 7.4.3.5 Dropout
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design With WEBENCH® Tools
        2. 8.2.2.2  Choosing the Switching Frequency
        3. 8.2.2.3  Setting the Output Voltage
        4. 8.2.2.4  Input Capacitor Selection
        5. 8.2.2.5  Output Capacitor Selection
        6. 8.2.2.6  VCC
        7. 8.2.2.7  CFF Selection
        8. 8.2.2.8  Power-Good Signal
        9. 8.2.2.9  Maximum Ambient Temperature
        10. 8.2.2.10 Other Connections
      3. 8.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Ground and Thermal Considerations
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
      3. 9.1.3 Device Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Soft Start and Recovery from Dropout

When designing with the TLVM236x5, slow rise in output voltage due to recovery from dropout and soft start must be considered as a two separate operating conditions, as shown in Figure 7-8 and Figure 7-9. Soft start is triggered by any of the following conditions:

  • Power is applied to the VIN pin of the device, releasing undervoltage lockout.
  • EN is used to turn on the device.
  • Recovery from shutdown due to overtemperature protection

After soft start is triggered, the power module takes the following actions:

  • The reference used in the power module to regulate the output voltage is slowly ramped up. The net result is that output voltage, if previously 0 V, takes tSS to reach 90% of the desired value.
  • Operating mode is set to auto mode of operation, activating the diode emulation mode for the low-side MOSFET. This allows start-up without pulling the output low. This is true even when there is a voltage already present at the output during a pre-bias start-up.
GUID-7D73DB17-9B43-4F07-859D-54962D0F4D36-low.gifFigure 7-8 Soft Start With and Without Pre-bias Voltage