SLYS035A September   2022  – September 2023 TMAG5173-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Temperature Sensor
    7. 6.7  Magnetic Characteristics For A1, B1, C1, D1
    8. 6.8  Magnetic Characteristics For A2, B2, C2, D2
    9. 6.9  Magnetic Temp Compensation Characteristics
    10. 6.10 I2C Interface Timing
    11. 6.11 Power up Timing
    12. 6.12 Timing Diagram
    13. 6.13 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Magnetic Flux Direction
      2. 7.3.2 Sensor Location
      3. 7.3.3 Interrupt Function
      4. 7.3.4 Device I2C Address
      5. 7.3.5 Magnetic Range Selection
      6. 7.3.6 Update Rate Settings
    4. 7.4 Device Functional Modes
      1. 7.4.1 Standby (Trigger) Mode
      2. 7.4.2 Sleep Mode
      3. 7.4.3 Continuous Measure Mode
    5. 7.5 Programming
      1. 7.5.1 I2C Interface
        1. 7.5.1.1 SCL
        2. 7.5.1.2 SDA
        3. 7.5.1.3 I2C Read/Write
          1. 7.5.1.3.1 Standard I2C Write
          2. 7.5.1.3.2 General Call Write
          3. 7.5.1.3.3 Standard 3-Byte I2C Read
          4. 7.5.1.3.4 1-Byte I2C Read Command for 16-Bit Data
          5. 7.5.1.3.5 1-Byte I2C Read Command for 8-Bit Data
          6. 7.5.1.3.6 I2C Read CRC
      2. 7.5.2 Data Definition
        1. 7.5.2.1 Magnetic Sensor Data
        2. 7.5.2.2 Temperature Sensor Data
        3. 7.5.2.3 Angle and Magnitude Data Definition
        4. 7.5.2.4 Magnetic Sensor Offset Correction
    6. 7.6 TMAG5173-Q1 Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Select the Sensitivity Option
      2. 8.1.2 Temperature Compensation for Magnets
      3. 8.1.3 Sensor Conversion
        1. 8.1.3.1 Continuous Conversion
        2. 8.1.3.2 Trigger Conversion
        3. 8.1.3.3 Pseudo-Simultaneous Sampling
      4. 8.1.4 Magnetic Limit Check
      5. 8.1.5 Magnetic Threshold Band Cross Detection
      6. 8.1.6 Error Calculation During Linear Measurement
      7. 8.1.7 Error Calculation During Angular Measurement
    2. 8.2 Typical Applications
      1. 8.2.1 Angle Measurement
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Gain Adjustment for Angle Measurement
        3. 8.2.1.3 Application Curves
      2. 8.2.2 I2C Address Expansion
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DBV|6
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The TMAG5173-Q1 is a low-power linear 3D Hall-effect sensor designed for a wide range of automotive and industrial applications. This device integrates three independent Hall-effect sensors in the X, Y, and Z axes. A precision analog signal-chain supports applications requiring narrow design tolerance. Integrated safety mechanisms enable robust functional safe system design. The device is suitable for 1D linear measurements, 2D angle measurements, 3D joystick measurements, magnetic threshold cross detection, and various user configurable switch function applications. The digital filter option allows up to 32 times sensor data integration for improved noise performance. The I2C interface, while supporting multiple operating VCC ranges, ensures seamless data communication with microcontrollers. The device has an integrated temperature sensor available for multiple system functions, such as thermal budget check or temperature compensation calculation for a given magnetic field.

The TMAG5173-Q1 supports multiple operating modes to optimize the system power consumptions and operating speed. During the active mode the device performs continuous conversions autonomously. During standby mode the INT pin or I2C communication can be used by a microcontroller to trigger a new conversion. During the sleep mode the device consumes ultra-low power and retains the configuration register values.

An integrated angle calculation engine (CORDIC) provides full 360° angular position information for both on-axis and off-axis topologies with an angle resolution of 1/16 degree. The angle calculation is performed for any of the X-Y, Y-Z, or Z-X planes based off the user configuration register selection. The device features magnetic gain and offset correction to mitigate the impact of system mechanical error sources.

The TMAG5173-Q1 can be configured through the user registers to enable any combination of magnetic axes and temperature channel conversions. The device supports several I2C read frames along with cyclic redundancy check and diagnostic status communications.

The TMAG5173-Q1 is offered in four different factory-programmed I2C addresses. The device also supports additional I2C addresses through the modification of a user-configurable I2C address register. Each orderable part can be configured to select one of two magnetic field ranges that suits the magnet strength and component placement during system calibration.

The device performs consistently across a wide ambient temperature range of –40°C to +125°C.

Package Information
PART NUMBER PACKAGE(1) PACKAGE SIZE(2)
TMAG5173-Q1 DBV (SOT-23, 6) 2.9 mm × 2.8 mm
For all available packages, see the package option addendum at the end of the data sheet.
The package size (length × width) is a nominal value and includes pins, where applicable.
TMAG5173-Q1 Application Block Diagram Application Block Diagram