SBASAI5B May   2023  – November 2023 TMAG5253

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Magnetic Characteristics
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Sensitivity Linearity
    2. 7.2 Ratiometric Architecture
    3. 7.3 Sensitivity Temperature Compensation
    4. 7.4 Quiescent Voltage Temperature Drift
    5. 7.5 Power-On Time
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Magnetic Flux Direction
      2. 8.3.2 Hall Element Location
      3. 8.3.3 Magnetic Response
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Selecting the Sensitivity Option
      2. 9.1.2 Temperature Compensation for Magnets
      3. 9.1.3 Adding a Low-Pass Filter
      4. 9.1.4 Designing With Multiple Sensors
      5. 9.1.5 Duty-Cycled, Low-Power Design
    2. 9.2 Typical Applications
      1. 9.2.1 Slide-By Displacement Sensing
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Head-On Displacement Sensing
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curve
      3. 9.2.3 Remote-Sensing Applications
    3. 9.3 Best Design Practices
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The TMAG5253 is a low-power linear Hall effect sensor that responds proportionally to magnetic flux density. The device features an enable pin to enter ultra-low power (nA) shutdown mode. The TMAG5253 features a fast start-up time (< 25 µs) designed for low-power position sensing applications. The device is available in an industry-leading 1.54-mm2 ultra-small footprint for space-constrained applications. The device has a wide supply range and can operate from 1.65 V to 3.6 V.

Magnetic flux perpendicular to the top of the package is sensed by the device and the TMAG5253 is available in bipolar sensitivity polarity option, where the north and south magnetic poles produce unique output voltages. The output changes linearly with the applied magnetic flux density, and four sensitivity options enable maximal output voltage swing based on the required sensing range.

The device uses a ratiometric architecture that can eliminate error from VCC tolerance when the external analog-to-digital converter (ADC) uses the same VCC for its reference. Additionally, the device features magnet temperature compensation to counteract the magnetic sensitivity drifts across a wide –40°C to 125°C temperature range. The device also features the ability to place the output in a high impedance state during shutdown mode. This enables multiple devices to be connected to a single ADC.

Package Information(1)
PART NUMBERPACKAGEPACKAGE SIZE(2)
TMAG5253DMR (X2SON. 4)1.40 mm × 1.10 mm
For all available packages, see the orderable addendum at the end of the data sheet.
The package size (length × width) is a nominal value and includes pins, where applicable.
GUID-20220519-SS0I-3KFD-4WXF-TDPTXZM1TSFH-low.svg Typical Schematic