SBOS702E October   2014  – September 2021 TMP102-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings (1)
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Digital Temperature Output
      2. 7.3.2  Serial Interface
      3. 7.3.3  Bus Overview
      4. 7.3.4  Serial Bus Address
      5. 7.3.5  Writing and Reading Operation
      6. 7.3.6  Slave Mode Operations
        1. 7.3.6.1 Slave Receiver Mode
        2. 7.3.6.2 Slave Transmitter Mode
      7. 7.3.7  SMBus Alert Function
      8. 7.3.8  General Call
      9. 7.3.9  High-Speed (Hs) Mode
      10. 7.3.10 Time-Out Function
      11. 7.3.11 Timing Diagrams
      12. 7.3.12 Two-Wire Timing Diagrams
    4. 7.4 Device Functional Modes
      1. 7.4.1 Continuous-Conversion Mode
      2. 7.4.2 Extended Mode (EM)
      3. 7.4.3 Shutdown Mode (SD)
      4. 7.4.4 One-Shot and Conversion Ready (OS)
      5. 7.4.5 Thermostat Mode (TM)
        1. 7.4.5.1 Comparator Mode (TM = 0)
        2. 7.4.5.2 Interrupt Mode (TM = 1)
    5. 7.5 Programming
      1. 7.5.1 Pointer Register
      2. 7.5.2 Temperature Register
      3. 7.5.3 Configuration Register
        1. 7.5.3.1 Shutdown Mode (SD)
        2. 7.5.3.2 Thermostat Mode (TM)
        3. 7.5.3.3 Polarity (POL)
        4. 7.5.3.4 Fault Queue (F1 and F0)
        5. 7.5.3.5 Converter Resolution (R1 and R0)
        6. 7.5.3.6 One-Shot (OS)
        7. 7.5.3.7 Extended Mode (EM)
        8. 7.5.3.8 Alert (AL Bit)
        9. 7.5.3.9 Conversion Rate (CR)
      4. 7.5.4 High-Limit and Low-Limit Registers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bus Overview

The device that initiates the transfer is called a master, and the devices controlled by the master are called slaves. The bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions.

To address a specific device, a START condition is initiated, indicated by pulling the data-line (SDA) from a high to low logic level when SCL is high. All slaves on the bus shift in the slave address byte on the rising edge of the clock, with the last bit indicating whether a read or write operation is intended. During the ninth clock pulse, the slave being addressed responds to the master by generating an acknowledge and by pulling SDA pin low.

A data transfer is then initiated and sent over eight clock pulses followed by an acknowledge bit. During the data transfer the SDA pin must remain stable when SCL is high, because any change in SDA pin when SCL pin is high is interpreted as a START signal or STOP signal.

When all data have been transferred, the master generates a STOP condition indicated by pulling SDA pin from low to high, when the SCL pin is high.