SLOS887F September   2014  – June 2022 TMP112-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Specifications for User-Calibrated Systems
    7. 7.7 Timing Requirements
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Digital Temperature Output
      2. 8.3.2 Serial Interface
        1. 8.3.2.1 Bus Overview
        2. 8.3.2.2 Serial Bus Address
        3. 8.3.2.3 Writing and Reading Operation
        4. 8.3.2.4 Target Mode Operation
          1. 8.3.2.4.1 Target Receiver Mode
          2. 8.3.2.4.2 Target Transmitter Mode
        5. 8.3.2.5 SMBus Alert Function
        6. 8.3.2.6 General Call
        7. 8.3.2.7 High-Speed (Hs) Mode
        8. 8.3.2.8 Timeout Function
        9. 8.3.2.9 Timing Diagrams
          1. 8.3.2.9.1 Two-Wire Timing Diagrams
    4. 8.4 Device Functional Modes
      1. 8.4.1 Continuous-Conversion Mode
      2. 8.4.2 Extended Mode (EM)
      3. 8.4.3 Shutdown Mode (SD)
      4. 8.4.4 One-Shot and Conversion Ready Mode (OS)
      5. 8.4.5 Thermostat Mode (TM)
        1. 8.4.5.1 Comparator Mode (TM = 0)
        2. 8.4.5.2 Interrupt Mode (TM = 1)
    5. 8.5 Programming
      1. 8.5.1 Pointer Register
      2. 8.5.2 Temperature Register
      3. 8.5.3 Configuration Register
        1. 8.5.3.1 Shutdown Mode (SD)
        2. 8.5.3.2 Thermostat Mode (TM)
        3. 8.5.3.3 Polarity (POL)
        4. 8.5.3.4 Fault Queue (F1/F0)
        5. 8.5.3.5 Converter Resolution (R1 and R0)
        6. 8.5.3.6 One-Shot (OS)
        7. 8.5.3.7 Extended Mode (EM)
        8. 8.5.3.8 Alert (AL)
        9. 8.5.3.9 Conversion Rate (CR)
      4. 8.5.4 High- and Low-Limit Registers
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Calibrating for Improved Accuracy
        1. 9.1.1.1 Example 1: Finding Worst-Case Accuracy From –15°C to 50°C
        2. 9.1.1.2 Example 2: Finding Worst-Case Accuracy From 25°C to 100°C
      2. 9.1.2 Using The Slope Specifications With a 1-Point Calibration
        1. 9.1.2.1 Power Supply-Level Contribution to Accuracy
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Timing Diagrams

The TMP112-Q1 device is two-wire, SMBus and I2C interface-compatible. Figure 8-3 to Figure 8-6 illustrate the various operations on the TMP112-Q1 device. Parameters for Figure 8-3 are listed in the Section 7.7 table. The bus definitions are defined as follows:

    Bus Idle:Both SDA and SCL lines remain high.
    Start Data Transfer:A change in the state of the SDA line, from high to low, when the SCL line is high, defines a START condition. Each data transfer is initiated with a START condition.
    Stop Data Transfer:A change in the state of the SDA line from low to high when the SCL line is high defines a STOP condition. Each data transfer is terminated with a repeated START or STOP condition.
    Data Transfer:The number of data bytes transferred between a START and a STOP condition is not limited and is determined by the controller device. Using the TMP112-Q1 device for single byte updates is also possible. To update only the most-significant (MS) byte, terminate the communication by issuing a START or STOP communication on the bus.
    Acknowledge:Each receiving device, when addressed, is obliged to generate an acknowledge bit. A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the acknowledge clock pulse. Setup and hold times must be taken into account. On a controller receive, the termination of the data transfer can be signaled by the controller generating a not-acknowledge (1) on the last byte that has been transmitted by the target.