SBOSA41A May   2023  – September 2023 TMP4718

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 I2C Interface Timing
    7. 7.7 Timing Diagrams
    8. 7.8 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 1.2-V Logic Compatible Inputs
      2. 8.3.2 Series Resistance Cancellation
      3. 8.3.3 Device Initialization, Resistor Decoding, and Default Temperature Conversion
      4. 8.3.4 Adjustable Default T_CRIT High-Temperature Limit
      5. 8.3.5 ALERT and T_CRIT Output
      6. 8.3.6 Fault Queue
      7. 8.3.7 Filtering
      8. 8.3.8 One-Shot Conversions
    4. 8.4 Device Functional Modes
      1. 8.4.1 Interrupt and Comparator Mode
        1. 8.4.1.1 Interrupt Mode
        2. 8.4.1.2 Comparator Mode
        3. 8.4.1.3 T_CRIT Output
      2. 8.4.2 Shutdown Mode
      3. 8.4.3 Continuous Conversion Mode
    5. 8.5 Programming
      1. 8.5.1 Temperature Data Format
      2. 8.5.2 I2C and SMBus Interface
      3. 8.5.3 Device Address
      4. 8.5.4 Bus Transactions
        1. 8.5.4.1 Writes
        2. 8.5.4.2 Reads
      5. 8.5.5 SMBus Alert Mode
    6. 8.6 Register Map
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The TMP4718 is a high accuracy 1°C temperature sensor with one local integrated sensor and a remote temperature sensor input that can be connected to a diode-connected transistor, such as the popular MMBT3904 NPN transistor, to replace traditional thermistors or thermocouples. The remote input can also be connected to a substrate thermal transistor or diode integrated inside microprocessors, microcontrollers, or FPGAs to monitor the die temperature of the IC.

The TMP4718 supports I2C and SMBus communication with logic levels down to 0.8V regardless of main supply rail. This enables interoperability with low voltage 1.2V MCUs without needing a secondary low voltage supply. The TMP4718 includes the Series Resistance Cancellation feature to automatically eliminate temperature errors caused by series resistance of up to 1 kΩ, allowing for greater flexibility routing to thermal diodes. The programmable offset feature allows the device to report offset-adjusted temperature data based on pre-calibrated data in specific user environments. Measurements can be done automatically with programmable conversion period, or with one-shot conversion triggered by an I2C command.

The TMP4718A and TMP4718B offer the same function but different SMBus or I2C device addresses. This allows the system to support two sensors on the same bus.

Package Information
PART NUMBERPACKAGE(1)PACKAGE SIZE(2)
TMP4718DGK (VSSOP, 8)3.00 mm × 4.90 mm
For all available packages, see the orderable addendum at the end of the data sheet.
The package size (length × width) is a nominal value and includes pins, where applicable.
GUID-20230904-SS0I-BWPK-BDVL-JKMTNVDBNXMK-low.svgSimplified Block Diagram