SPRSP63B October   2022  – November 2023 TMS320F2800132 , TMS320F2800133 , TMS320F2800135 , TMS320F2800137

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
    1. 3.1 Functional Block Diagram
  5. Device Comparison
    1. 4.1 Related Products
  6. Pin Configuration and Functions
    1. 5.1 Pin Diagrams
    2. 5.2 Pin Attributes
    3. 5.3 Signal Descriptions
      1. 5.3.1 Analog Signals
      2. 5.3.2 Digital Signals
      3. 5.3.3 Power and Ground
      4. 5.3.4 Test, JTAG, and Reset
    4. 5.4 Pin Multiplexing
      1. 5.4.1 GPIO Muxed Pins
        1. 5.4.1.1 GPIO Muxed Pins
      2. 5.4.2 Digital Inputs on ADC Pins (AIOs)
      3. 5.4.3 Digital Inputs and Outputs on ADC Pins (AGPIOs)
      4. 5.4.4 GPIO Input X-BAR
      5. 5.4.5 GPIO Output X-BAR and ePWM X-BAR
    5. 5.5 GPIO and ADC Allocation
    6. 5.6 Pins With Internal Pullup and Pulldown
    7. 5.7 Connections for Unused Pins
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Power Consumption Summary
      1. 6.4.1 System Current Consumption - VREG Enable - Internal Supply
      2. 6.4.2 System Current Consumption - VREG Disable - External Supply
      3. 6.4.3 Operating Mode Test Description
      4. 6.4.4 Current Consumption Graphs
      5. 6.4.5 Reducing Current Consumption
        1. 6.4.5.1 Typical Current Reduction per Disabled Peripheral
    5. 6.5  Electrical Characteristics
    6. 6.6  Thermal Resistance Characteristics for PM Package
    7. 6.7  Thermal Resistance Characteristics for PT Package
    8. 6.8  Thermal Resistance Characteristics for RGZ Package
    9. 6.9  Thermal Resistance Characteristics for RHB Package
    10. 6.10 Thermal Design Considerations
    11. 6.11 System
      1. 6.11.1  Power Management Module (PMM)
        1. 6.11.1.1 Introduction
        2. 6.11.1.2 Overview
          1. 6.11.1.2.1 Power Rail Monitors
            1. 6.11.1.2.1.1 I/O POR (Power-On Reset) Monitor
            2. 6.11.1.2.1.2 I/O BOR (Brown-Out Reset) Monitor
            3. 6.11.1.2.1.3 VDD POR (Power-On Reset) Monitor
          2. 6.11.1.2.2 External Supervisor Usage
          3. 6.11.1.2.3 Delay Blocks
          4. 6.11.1.2.4 Internal 1.2-V LDO Voltage Regulator (VREG)
          5. 6.11.1.2.5 VREGENZ
        3. 6.11.1.3 External Components
          1. 6.11.1.3.1 Decoupling Capacitors
            1. 6.11.1.3.1.1 VDDIO Decoupling
            2. 6.11.1.3.1.2 VDD Decoupling
        4. 6.11.1.4 Power Sequencing
          1. 6.11.1.4.1 Supply Pins Ganging
          2. 6.11.1.4.2 Signal Pins Power Sequence
          3. 6.11.1.4.3 Supply Pins Power Sequence
            1. 6.11.1.4.3.1 External VREG/VDD Mode Sequence
            2. 6.11.1.4.3.2 Internal VREG/VDD Mode Sequence
            3. 6.11.1.4.3.3 Supply Sequencing Summary and Effects of Violations
            4. 6.11.1.4.3.4 Supply Slew Rate
        5. 6.11.1.5 Recommended Operating Conditions Applicability to the PMM
        6. 6.11.1.6 Power Management Module Electrical Data and Timing
          1. 6.11.1.6.1 Power Management Module Operating Conditions
          2. 6.11.1.6.2 Power Management Module Characteristics
          3.        Supply Voltages
      2. 6.11.2  Reset Timing
        1. 6.11.2.1 Reset Sources
        2. 6.11.2.2 Reset Electrical Data and Timing
          1. 6.11.2.2.1 Reset - XRSn - Timing Requirements
          2. 6.11.2.2.2 Reset - XRSn - Switching Characteristics
          3. 6.11.2.2.3 Reset Timing Diagrams
      3. 6.11.3  Clock Specifications
        1. 6.11.3.1 Clock Sources
        2. 6.11.3.2 Clock Frequencies, Requirements, and Characteristics
          1. 6.11.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times
            1. 6.11.3.2.1.1 Input Clock Frequency
            2. 6.11.3.2.1.2 XTAL Oscillator Characteristics
            3. 6.11.3.2.1.3 X1 Input Level Characteristics When Using an External Clock Source - Not a Crystal
            4. 6.11.3.2.1.4 X1 Timing Requirements
            5. 6.11.3.2.1.5 AUXCLKIN Timing Requirements
            6. 6.11.3.2.1.6 APLL Characteristics
            7. 6.11.3.2.1.7 XCLKOUT Switching Characteristics - PLL Bypassed or Enabled
            8. 6.11.3.2.1.8 Internal Clock Frequencies
        3. 6.11.3.3 Input Clocks and PLLs
        4. 6.11.3.4 XTAL Oscillator
          1. 6.11.3.4.1 Introduction
          2. 6.11.3.4.2 Overview
            1. 6.11.3.4.2.1 Electrical Oscillator
              1. 6.11.3.4.2.1.1 Modes of Operation
                1. 6.11.3.4.2.1.1.1 Crystal Mode of Operation
                2. 6.11.3.4.2.1.1.2 Single-Ended Mode of Operation
              2. 6.11.3.4.2.1.2 XTAL Output on XCLKOUT
            2. 6.11.3.4.2.2 Quartz Crystal
            3. 6.11.3.4.2.3 GPIO Modes of Operation
          3. 6.11.3.4.3 Functional Operation
            1. 6.11.3.4.3.1 ESR – Effective Series Resistance
            2. 6.11.3.4.3.2 Rneg – Negative Resistance
            3. 6.11.3.4.3.3 Start-up Time
              1. 6.11.3.4.3.3.1 X1/X2 Precondition
            4. 6.11.3.4.3.4 DL – Drive Level
          4. 6.11.3.4.4 How to Choose a Crystal
          5. 6.11.3.4.5 Testing
          6. 6.11.3.4.6 Common Problems and Debug Tips
          7. 6.11.3.4.7 Crystal Oscillator Specifications
            1. 6.11.3.4.7.1 Crystal Oscillator Parameters
            2. 6.11.3.4.7.2 Crystal Equivalent Series Resistance (ESR) Requirements
            3. 6.11.3.4.7.3 Crystal Oscillator Electrical Characteristics
        5. 6.11.3.5 Internal Oscillators
          1. 6.11.3.5.1 INTOSC Characteristics
          2. 6.11.3.5.2 INTOSC2 with External Precision Resistor – ExtR
      4. 6.11.4  Flash Parameters
        1. 6.11.4.1 Flash Parameters 
      5. 6.11.5  RAM Specifications
      6. 6.11.6  ROM Specifications
      7. 6.11.7  Emulation/JTAG
        1. 6.11.7.1 JTAG Electrical Data and Timing
          1. 6.11.7.1.1 JTAG Timing Requirements
          2. 6.11.7.1.2 JTAG Switching Characteristics
          3. 6.11.7.1.3 JTAG Timing Diagram
        2. 6.11.7.2 cJTAG Electrical Data and Timing
          1. 6.11.7.2.1 cJTAG Timing Requirements
          2. 6.11.7.2.2 cJTAG Switching Characteristics
          3. 6.11.7.2.3 cJTAG Timing Diagram
      8. 6.11.8  GPIO Electrical Data and Timing
        1. 6.11.8.1 GPIO – Output Timing
          1. 6.11.8.1.1 General-Purpose Output Switching Characteristics
          2. 6.11.8.1.2 General-Purpose Output Timing Diagram
        2. 6.11.8.2 GPIO – Input Timing
          1. 6.11.8.2.1 General-Purpose Input Timing Requirements
          2. 6.11.8.2.2 Sampling Mode
        3. 6.11.8.3 Sampling Window Width for Input Signals
      9. 6.11.9  Interrupts
        1. 6.11.9.1 External Interrupt (XINT) Electrical Data and Timing
          1. 6.11.9.1.1 External Interrupt Timing Requirements
          2. 6.11.9.1.2 External Interrupt Switching Characteristics
          3. 6.11.9.1.3 External Interrupt Timing
      10. 6.11.10 Low-Power Modes
        1. 6.11.10.1 Clock-Gating Low-Power Modes
        2. 6.11.10.2 Low-Power Mode Wake-up Timing
          1. 6.11.10.2.1 IDLE Mode Timing Requirements
          2. 6.11.10.2.2 IDLE Mode Switching Characteristics
          3. 6.11.10.2.3 IDLE Entry and Exit Timing Diagram
          4. 6.11.10.2.4 STANDBY Mode Timing Requirements
          5. 6.11.10.2.5 STANDBY Mode Switching Characteristics
          6. 6.11.10.2.6 STANDBY Entry and Exit Timing Diagram
          7. 6.11.10.2.7 HALT Mode Timing Requirements
          8. 6.11.10.2.8 HALT Mode Switching Characteristics
          9. 6.11.10.2.9 HALT Entry and Exit Timing Diagram
    12. 6.12 Analog Peripherals
      1. 6.12.1 Analog Pins and Internal Connections
      2. 6.12.2 Analog Signal Descriptions
      3. 6.12.3 Analog-to-Digital Converter (ADC)
        1. 6.12.3.1 ADC Configurability
          1. 6.12.3.1.1 Signal Mode
        2. 6.12.3.2 ADC Electrical Data and Timing
          1. 6.12.3.2.1 ADC Operating Conditions
          2. 6.12.3.2.2 ADC Characteristics
          3. 6.12.3.2.3 ADC Performance Per Pin
          4. 6.12.3.2.4 ADC Input Model
          5. 6.12.3.2.5 ADC Timing Diagrams
      4. 6.12.4 Temperature Sensor
        1. 6.12.4.1 Temperature Sensor Electrical Data and Timing
          1. 6.12.4.1.1 Temperature Sensor Characteristics
      5. 6.12.5 Comparator Subsystem (CMPSS)
        1. 6.12.5.1 CMPSS Module Variants
        2. 6.12.5.2 CMPx_DACL
        3. 6.12.5.3 CMPSS Connectivity Diagram
        4. 6.12.5.4 Block Diagrams
        5. 6.12.5.5 CMPSS Electrical Data and Timing
          1. 6.12.5.5.1 CMPSS Comparator Electrical Characteristics
          2. 6.12.5.5.2 CMPSS_LITE Comparator Electrical Characteristics
          3.        CMPSS Comparator Input Referred Offset and Hysteresis
          4. 6.12.5.5.3 CMPSS DAC Static Electrical Characteristics
          5. 6.12.5.5.4 CMPSS_LITE DAC Static Electrical Characteristics
          6. 6.12.5.5.5 CMPSS Illustrative Graphs
          7. 6.12.5.5.6 CMPSS DAC Dynamic Error
          8. 6.12.5.5.7 Buffered Output from CMPx_DACL Operating Conditions
          9. 6.12.5.5.8 Buffered Output from CMPx_DACL Electrical Characteristics
    13. 6.13 Control Peripherals
      1. 6.13.1 Enhanced Pulse Width Modulator (ePWM)
        1. 6.13.1.1 Control Peripherals Synchronization
        2. 6.13.1.2 ePWM Electrical Data and Timing
          1. 6.13.1.2.1 ePWM Timing Requirements
          2. 6.13.1.2.2 ePWM Switching Characteristics
          3. 6.13.1.2.3 Trip-Zone Input Timing
            1. 6.13.1.2.3.1 Trip-Zone Input Timing Requirements
            2. 6.13.1.2.3.2 PWM Hi-Z Characteristics Timing Diagram
      2. 6.13.2 High-Resolution Pulse Width Modulator (HRPWM)
        1. 6.13.2.1 HRPWM Electrical Data and Timing
          1. 6.13.2.1.1 High-Resolution PWM Characteristics
      3. 6.13.3 External ADC Start-of-Conversion Electrical Data and Timing
        1. 6.13.3.1 External ADC Start-of-Conversion Switching Characteristics
        2. 6.13.3.2 ADCSOCAO or ADCSOCBO Timing Diagram
      4. 6.13.4 Enhanced Capture (eCAP)
        1. 6.13.4.1 eCAP Block Diagram
        2. 6.13.4.2 eCAP Synchronization
        3. 6.13.4.3 eCAP Electrical Data and Timing
          1. 6.13.4.3.1 eCAP Timing Requirements
          2. 6.13.4.3.2 eCAP Switching Characteristics
      5. 6.13.5 Enhanced Quadrature Encoder Pulse (eQEP)
        1. 6.13.5.1 eQEP Electrical Data and Timing
          1. 6.13.5.1.1 eQEP Timing Requirements
          2. 6.13.5.1.2 eQEP Switching Characteristics
    14. 6.14 Communications Peripherals
      1. 6.14.1 Controller Area Network (CAN)
      2. 6.14.2 Inter-Integrated Circuit (I2C)
        1. 6.14.2.1 I2C Electrical Data and Timing
          1. 6.14.2.1.1 I2C Timing Requirements
          2. 6.14.2.1.2 I2C Switching Characteristics
          3. 6.14.2.1.3 I2C Timing Diagram
      3. 6.14.3 Serial Communications Interface (SCI)
      4. 6.14.4 Serial Peripheral Interface (SPI)
        1. 6.14.4.1 SPI Master Mode Timings
          1. 6.14.4.1.1 SPI Master Mode Timing Requirements
          2. 6.14.4.1.2 SPI Master Mode Switching Characteristics - Clock Phase 0
          3. 6.14.4.1.3 SPI Master Mode Switching Characteristics - Clock Phase 1
          4. 6.14.4.1.4 SPI Master Mode Timing Diagrams
        2. 6.14.4.2 SPI Slave Mode Timings
          1. 6.14.4.2.1 SPI Slave Mode Timing Requirements
          2. 6.14.4.2.2 SPI Slave Mode Switching Characteristics
          3. 6.14.4.2.3 SPI Slave Mode Timing Diagrams
  8. Detailed Description
    1. 7.1  Overview
    2. 7.2  Functional Block Diagram
    3. 7.3  Memory
      1. 7.3.1 Memory Map
        1. 7.3.1.1 Dedicated RAM (Mx RAM)
        2. 7.3.1.2 Local Shared RAM (LSx RAM)
      2. 7.3.2 Flash Memory Map
      3. 7.3.3 Peripheral Registers Memory Map
    4. 7.4  Identification
    5. 7.5  C28x Processor
      1. 7.5.1 Floating-Point Unit (FPU)
      2. 7.5.2 Trigonometric Math Unit (TMU)
    6. 7.6  Device Boot Modes
      1. 7.6.1 Device Boot Configurations
        1. 7.6.1.1 Configuring Boot Mode Pins
        2. 7.6.1.2 Configuring Boot Mode Table Options
      2. 7.6.2 GPIO Assignments
    7. 7.7  Security
      1. 7.7.1 Securing the Boundary of the Chip
        1. 7.7.1.1 JTAGLOCK
        2. 7.7.1.2 Zero-pin Boot
      2. 7.7.2 Dual-Zone Security
      3. 7.7.3 Disclaimer
    8. 7.8  Watchdog
    9. 7.9  C28x Timers
    10. 7.10 Dual-Clock Comparator (DCC)
      1. 7.10.1 Features
      2. 7.10.2 Mapping of DCCx Clock Source Inputs
  9. Applications, Implementation, and Layout
    1. 8.1 Application and Implementation
    2. 8.2 Key Device Features
    3. 8.3 Application Information
      1. 8.3.1 Typical Applications
        1. 8.3.1.1 Air-conditioner Outdoor Unit
          1. 8.3.1.1.1 System Block Diagram
          2. 8.3.1.1.2 Air Conditioner Outdoor Unit Resources
        2. 8.3.1.2 Washer and Dryer
          1. 8.3.1.2.1 System Block Diagram
          2. 8.3.1.2.2 Washer and Dryer Resources
        3. 8.3.1.3 Robotic Lawn Mower
          1. 8.3.1.3.1 System Block Diagram
          2. 8.3.1.3.2 Robotic Lawn Mower Resources
        4. 8.3.1.4 Merchant Telecom Rectifiers
          1. 8.3.1.4.1 System Block Diagram
          2. 8.3.1.4.2 Merchant Telecom Rectifiers Resources
  10. Device and Documentation Support
    1. 9.1 Getting Started and Next Steps
    2. 9.2 Device Nomenclature
    3. 9.3 Markings
    4. 9.4 Tools and Software
    5. 9.5 Documentation Support
    6. 9.6 Support Resources
    7. 9.7 Trademarks
    8. 9.8 Electrostatic Discharge Caution
    9. 9.9 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PM|64
  • RGZ|48
  • RHB|32
  • PT|48
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Key Device Features

Table 8-1 Key Device Features
MODULE FEATURE SYSTEM BENEFIT
PROCESSING
Real-time control CPUs

Up to 120 MIPS

C28x: 120 MIPS

Flash: Up to 256KB

RAM : Up to 36KB

32-bit Floating-Point Unit (FPU32)

Trigonometric Math Unit (TMU)

TI’s 32-bit C28x DSP core provides 120 MHz of signal-processing performance for floating- or fixed-point code running from either on-chip flash or SRAM.

FPU32: Native hardware support for IEEE-754 single-precision floating-point operations

TMU: Accelerators used to speed up execution of trigonometric and arithmetic operations for faster computation (such as PLL and DQ transform) optimized for control applications. TMU helps in achieving faster control loops, resulting in higher efficiency and better component sizing.

Special instructions to support nonlinear PID control algorithms

SENSING
Analog-to-Digital Converter (ADC) (12-bit)

Up to 2 ADC modules

4 MSPS

Up to 21 channels

ADC provides precise and concurrent sampling of all three-phase currents and DC bus with zero jitter.

ADC post-processing – On-chip hardware reduces ADC ISR complexity and shortens current loop cycles

More ADCs help in multiphase applications. Provide better effective MSPS (oversampling) and typical ENOB for better control-loop performance.

Comparator Subsystem (CMPSS) CMPSS

1 windowed comparator

Dual 12-bit DACs

DAC ramp generation

Low DAC output on external pin

Digital filters

60-ns detection to trip time

Slope compensation

System protection without false alarms:

Comparator Subsystem (CMPSS) modules are useful for applications such as peak-current mode control, switched-mode power, power factor correction, and voltage trip monitoring.

PWM trip-triggering and removal of unwanted noise are easy with blanking window and filtering features provided with the analog comparator subsystems.

Provides better control accuracy. No need for further CPU configuration to control the PWM with the Comparator and 12-bit DAC (CMPSS) and 9.5-bit effective reference DAC for CMPSS_LITE.

Enables protection and control using the same pin.

CMPSS_LITE

3 windowed comparators

Dual 9.5-bit effective reference DACs

Digital filters

40-ns detection to trip time

Slope compensation

Enhanced Quadrature Encoder Pulse (eQEP) 1 eQEP module Used for direct interface with a linear or rotary incremental encoder to get position, direction, and speed information from a rotating machine used in a high-performance motion and position-control system. Also can be used in other applications to count input pulses from an external device (such as a sensor).
Enhanced Capture (eCAP)

2 eCAP modules

Measures elapsed time between events (up to 4 time-stamped events).

Connects to any GPIO through the input X-BAR.

When not used in capture mode, the eCAP module can be configured as a single-channel PWM output (APWM).

Applications for eCAP include:

Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall sensors)

Elapsed time measurements between position sensor pulses

Period and duty cycle measurements of pulse train signals

Decoding current or voltage amplitude derived from duty-cycle encoded current/voltage sensors

ACTUATION
Enhanced Pulse Width Modulation (ePWM)

Up to 14 ePWM channels

Ability to generate high-side/low-side PWMs with deadband

Supports Valley switching (ability to switch PWM output at valley point) and features like blanking window

Flexible PWM waveform generation with best power topology coverage.

Shadowed deadband and shadowed action qualifier enable adaptive PWM generation and protection for improved control accuracy and reduced power loss.

Enables improvement in Power Factor (PF) and Total Harmonic Distortion (THD), which is especially relevant in Power Factor Correction (PFC) applications. Improves light load efficiency.

One-shot and global reload feature

Critical for variable frequency and multiphase DC-DC applications and helps in attaining high-frequency control loops (>2 MHz).

Enables control of interleaved LLC topologies at high frequencies

Independent PWM action on a Cycle-by-Cycle (CBC) trip event and an One-Shot Trip (OST) event

Provides cycle-by-cycle protection and complete shutoff of PWM under fault condition. Helps implement multiphase PFC or DC-DC control.
Load on SYNC (support for shadow-to-active load on a SYNC event) Enables variable-frequency applications (allows LLC control in power conversion).
Ability to shut down the PWMs without software intervention (no ISR latency) Fast protection under fault condition
Delayed Trip Functionality Helps implement the deadband with Peak Current Mode Control (PCMC) Phase-Shifted Full Bride (PSFB) DC-DC easily without occupying much CPU resources (even on trigger events based on comparator, trip, or sync-in events).
Deadband Generator (DB) submodule Prevents simultaneous ON conditions of High and Low side gates by adding programmable delay to rising (RED) and falling (FED) PWM signal edges.
Flexible PWM Phase Relationships and Timer Synchronization Each ePWM module can be synchronized with other ePWM modules or other peripherals. Keeps PWM edges perfectly in synchronization with each other or with certain events.

Supports flexible ADC scheduling with specific sampling window in synchronization with power device switching.

High-Resolution Pulse Width Modulation (HRPWM)

2 channels with high-resolution capability (150 ps)

Provides 150-ps steps for duty cycle, period, deadband and phase offsets for 99% greater precision

Beneficial for accurate control and enables better-performance high-frequency power conversion.

Achieves cleaner waveforms and avoids oscillations/limit cycle at output.

CONNECTIVITY
Serial Peripheral Interface (SPI) 1 high-speed SPI port Supports 30 MHz
Serial Communication Interface (SCI) 3 SCI (UART) modules Interfaces with controllers
Controller Area Network (CAN) 1 CAN module Provides compatibility with classic CAN modules
Inter-Integrated Circuit (I2C) 2 I2C modules Interfaces with external EEPROMs, sensors, or controllers
OTHER SYSTEM FEATURES
Security enhancers

Dual-zone Code Security Module (DCSM)

Watchdog

Write Protection on Register

Missing Clock Detection Logic (MCD)

Error Correction Code (ECC) and parity

Dual-Clock Comparator (DCC)

DCSM: Prevents duplication and reverse-engineering of proprietary code

Watchdog: Generates reset if CPU gets stuck into endless loop of execution

Write Protection on Registers:

LOCK protection on system configuration registers

Protection against spurious CPU writes

MCD: Automatic clock failure detection

ECC and parity: Single-bit error correction and double-bit error detection

DCC: Used to detect faults in clock source

Crossbars (XBARs)

Provides flexibility to connect device inputs, outputs, and internal resources in a variety of configurations.

• Input X-BAR

• Output X-BAR

• ePWM X-BAR

Enhances hardware design versatility:

Input X-BAR: Routes signals from any GPIO to multiple IP blocks within the chip

Output XBAR: Routes internal signals onto designated GPIO pins

ePWM X-BAR: Routes internal signals from various IP blocks to EPWM