SPRSP69B July   2023  – November 2023 TMS320F28P650DK , TMS320F28P659DK-Q1

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
    1. 3.1 Functional Block Diagram
  5. Device Comparison
    1. 4.1 Related Products
  6. Pin Configuration and Functions
    1. 5.1 Pin Diagrams
    2. 5.2 Pin Attributes
    3. 5.3 Signal Descriptions
      1. 5.3.1 Analog Signals
      2. 5.3.2 Digital Signals
      3. 5.3.3 Power and Ground
      4. 5.3.4 Test, JTAG, and Reset
    4. 5.4 Pins With Internal Pullup and Pulldown
    5. 5.5 Pin Multiplexing
      1. 5.5.1 GPIO Muxed Pins
      2. 5.5.2 USB Pin Muxing
      3. 5.5.3 High-Speed SPI Pin Muxing
    6. 5.6 Connections for Unused Pins
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings – Commercial
    3. 6.3  ESD Ratings – Automotive
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Power Consumption Summary
      1. 6.5.1 System Current Consumption VREG Enabled
      2. 6.5.2 System Current Consumption VREG Disable - External Supply
      3. 6.5.3 Operating Mode Test Description
      4. 6.5.4 Current Consumption Graphs
      5. 6.5.5 Reducing Current Consumption
        1. 6.5.5.1 Typical Current Reduction per Disabled Peripheral
    6. 6.6  Electrical Characteristics
    7. 6.7  Thermal Resistance Characteristics for ZEJ Package
    8. 6.8  Thermal Resistance Characteristics for PTP Package
    9. 6.9  Thermal Resistance Characteristics for NMR Package
    10. 6.10 Thermal Resistance Characteristics for PZP Package
    11. 6.11 Thermal Design Considerations
    12. 6.12 System
      1. 6.12.1  Power Management Module (PMM)
        1. 6.12.1.1 Introduction
        2. 6.12.1.2 Overview
          1. 6.12.1.2.1 Power Rail Monitors
            1. 6.12.1.2.1.1 I/O POR (Power-On Reset) Monitor
            2. 6.12.1.2.1.2 I/O BOR (Brown-Out Reset) Monitor
            3. 6.12.1.2.1.3 VDD POR (Power-On Reset) Monitor
          2. 6.12.1.2.2 External Supervisor Usage
          3. 6.12.1.2.3 Delay Blocks
          4. 6.12.1.2.4 Internal 1.2-V LDO Voltage Regulator (VREG)
          5. 6.12.1.2.5 VREGENZ
        3. 6.12.1.3 External Components
          1. 6.12.1.3.1 Decoupling Capacitors
            1. 6.12.1.3.1.1 VDDIO Decoupling
            2. 6.12.1.3.1.2 VDD Decoupling
        4. 6.12.1.4 Power Sequencing
          1. 6.12.1.4.1 Supply Pins Ganging
          2. 6.12.1.4.2 Signal Pins Power Sequence
          3. 6.12.1.4.3 Supply Pins Power Sequence
            1. 6.12.1.4.3.1 External VREG/VDD Mode Sequence
            2. 6.12.1.4.3.2 Internal VREG/VDD Mode Sequence
            3. 6.12.1.4.3.3 Supply Sequencing Summary and Effects of Violations
            4. 6.12.1.4.3.4 Supply Slew Rate
        5. 6.12.1.5 Power Management Module Electrical Data and Timing
          1. 6.12.1.5.1 Power Management Module Operating Conditions
          2. 6.12.1.5.2 Power Management Module Characteristics
      2. 6.12.2  Reset Timing
        1. 6.12.2.1 Reset Sources
        2. 6.12.2.2 Reset Electrical Data and Timing
          1. 6.12.2.2.1 Reset XRSn Timing Requirements
          2. 6.12.2.2.2 Reset XRSn Switching Characteristics
          3. 6.12.2.2.3 Reset Timing Diagrams
      3. 6.12.3  Clock Specifications
        1. 6.12.3.1 Clock Sources
        2. 6.12.3.2 Clock Frequencies, Requirements, and Characteristics
          1. 6.12.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times
            1. 6.12.3.2.1.1 Input Clock Frequency
            2. 6.12.3.2.1.2 XTAL Oscillator Characteristics
            3. 6.12.3.2.1.3 X1 Input Level Characteristics When Using an External Clock Source Not a Crystal
            4. 6.12.3.2.1.4 X1 Timing Requirements
            5. 6.12.3.2.1.5 AUXCLKIN Timing Requirements
            6. 6.12.3.2.1.6 APLL Characteristics
            7. 6.12.3.2.1.7 XCLKOUT Switching Characteristics PLL Bypassed or Enabled
            8. 6.12.3.2.1.8 Internal Clock Frequencies
        3. 6.12.3.3 Input Clocks
        4. 6.12.3.4 XTAL Oscillator
          1. 6.12.3.4.1 Introduction
          2. 6.12.3.4.2 Overview
            1. 6.12.3.4.2.1 Electrical Oscillator
              1. 6.12.3.4.2.1.1 Modes of Operation
                1. 6.12.3.4.2.1.1.1 Crystal Mode of Operation
                2. 6.12.3.4.2.1.1.2 Single-Ended Mode of Operation
              2. 6.12.3.4.2.1.2 XTAL Output on XCLKOUT
            2. 6.12.3.4.2.2 Quartz Crystal
            3. 6.12.3.4.2.3 GPIO Modes of Operation
          3. 6.12.3.4.3 Functional Operation
            1. 6.12.3.4.3.1 ESR – Effective Series Resistance
            2. 6.12.3.4.3.2 Rneg – Negative Resistance
            3. 6.12.3.4.3.3 Start-up Time
            4. 6.12.3.4.3.4 DL – Drive Level
          4. 6.12.3.4.4 How to Choose a Crystal
          5. 6.12.3.4.5 Testing
          6. 6.12.3.4.6 Common Problems and Debug Tips
          7. 6.12.3.4.7 Crystal Oscillator Specifications
            1. 6.12.3.4.7.1 Crystal Oscillator Electrical Characteristics
            2. 6.12.3.4.7.2 Crystal Equivalent Series Resistance (ESR) Requirements
            3. 6.12.3.4.7.3 Crystal Oscillator Parameters
            4. 6.12.3.4.7.4 Crystal Oscillator Electrical Characteristics
        5. 6.12.3.5 Internal Oscillators
          1. 6.12.3.5.1 INTOSC Characteristics
      4. 6.12.4  Flash Parameters
        1. 6.12.4.1 Flash Parameters 
      5. 6.12.5  RAM Specifications
      6. 6.12.6  ROM Specifications
      7. 6.12.7  Emulation/JTAG
        1. 6.12.7.1 JTAG Electrical Data and Timing
          1. 6.12.7.1.1 JTAG Timing Requirements
          2. 6.12.7.1.2 JTAG Switching Characteristics
          3. 6.12.7.1.3 JTAG Timing Diagram
        2. 6.12.7.2 cJTAG Electrical Data and Timing
          1. 6.12.7.2.1 cJTAG Timing Requirements
          2. 6.12.7.2.2 cJTAG Switching Characteristics
          3. 6.12.7.2.3 cJTAG Timing Diagram
      8. 6.12.8  GPIO Electrical Data and Timing
        1. 6.12.8.1 GPIO – Output Timing
          1. 6.12.8.1.1 General-Purpose Output Switching Characteristics
          2. 6.12.8.1.2 General-Purpose Output Timing Diagram
        2. 6.12.8.2 GPIO – Input Timing
          1. 6.12.8.2.1 General-Purpose Input Timing Requirements
          2. 6.12.8.2.2 Sampling Mode
        3. 6.12.8.3 Sampling Window Width for Input Signals
      9. 6.12.9  Interrupts
        1. 6.12.9.1 External Interrupt (XINT) Electrical Data and Timing
          1. 6.12.9.1.1 External Interrupt Timing Requirements
          2. 6.12.9.1.2 External Interrupt Switching Characteristics
          3. 6.12.9.1.3 External Interrupt Timing
      10. 6.12.10 Low-Power Modes
        1. 6.12.10.1 Clock-Gating Low-Power Modes
        2. 6.12.10.2 Low-Power Mode Wake-up Timing
          1. 6.12.10.2.1 IDLE Mode Timing Requirements
          2. 6.12.10.2.2 IDLE Mode Switching Characteristics
          3. 6.12.10.2.3 IDLE Entry and Exit Timing Diagram
          4. 6.12.10.2.4 STANDBY Mode Timing Requirements
          5. 6.12.10.2.5 STANDBY Mode Switching Characteristics
          6. 6.12.10.2.6 STANDBY Entry and Exit Timing Diagram
          7. 6.12.10.2.7 HALT Mode Timing Requirements
          8. 6.12.10.2.8 HALT Mode Switching Characteristics
          9. 6.12.10.2.9 HALT Entry and Exit Timing Diagram
      11. 6.12.11 External Memory Interface (EMIF)
        1. 6.12.11.1 Asynchronous Memory Support
        2. 6.12.11.2 Synchronous DRAM Support
        3. 6.12.11.3 EMIF Electrical Data and Timing
          1. 6.12.11.3.1 EMIF Synchronous Memory Timing Requirements
          2. 6.12.11.3.2 EMIF Synchronous Memory Switching Characteristics
          3. 6.12.11.3.3 EMIF Synchronous Memory Timing Diagrams
          4. 6.12.11.3.4 EMIF Asynchronous Memory Timing Requirements
          5. 6.12.11.3.5 EMIF Asynchronous Memory Switching Characteristics
          6. 6.12.11.3.6 EMIF Asynchronous Memory Timing Diagrams
    13. 6.13 C28x Analog Peripherals
      1. 6.13.1 Analog Subsystem
        1. 6.13.1.1 Features
        2. 6.13.1.2 Block Diagram
      2. 6.13.2 Analog-to-Digital Converter (ADC)
        1. 6.13.2.1 ADC Configurability
          1. 6.13.2.1.1 Signal Mode
        2. 6.13.2.2 ADC Electrical Data and Timing
          1. 6.13.2.2.1  ADC Operating Conditions 12-bit Single-Ended
          2. 6.13.2.2.2  ADC Operating Conditions 12-bit Differential
          3. 6.13.2.2.3  ADC Operating Conditions 16-bit Single-Ended
          4. 6.13.2.2.4  ADC Operating Conditions 16-bit Differential
          5. 6.13.2.2.5  ADC Characteristics 12-bit Single-Ended
          6. 6.13.2.2.6  ADC Characteristics 12-bit Differential
          7. 6.13.2.2.7  ADC Characteristics 16-bit Single-Ended
          8. 6.13.2.2.8  ADC Characteristics 16-bit Differential
          9. 6.13.2.2.9  ADC Performance Per Pin
          10. 6.13.2.2.10 ADC Input Models
          11. 6.13.2.2.11 ADC Timing Diagrams
      3. 6.13.3 Temperature Sensor
        1. 6.13.3.1 Temperature Sensor Electrical Data and Timing
          1. 6.13.3.1.1 Temperature Sensor Characteristics
      4. 6.13.4 Comparator Subsystem (CMPSS)
        1. 6.13.4.1 CMPSS Connectivity Diagram
        2. 6.13.4.2 Block Diagram
        3. 6.13.4.3 CMPSS Electrical Data and Timing
          1. 6.13.4.3.1 Comparator Electrical Characteristics
          2.        CMPSS Comparator Input Referred Offset and Hysteresis
          3. 6.13.4.3.2 CMPSS DAC Static Electrical Characteristics
          4. 6.13.4.3.3 CMPSS Illustrative Graphs
          5. 6.13.4.3.4 CMPSS DAC Dynamic Error
      5. 6.13.5 Buffered Digital-to-Analog Converter (DAC)
        1. 6.13.5.1 Buffered DAC Electrical Data and Timing
          1. 6.13.5.1.1 Buffered DAC Operating Conditions
          2. 6.13.5.1.2 Buffered DAC Electrical Characteristics
    14. 6.14 C28x Control Peripherals
      1. 6.14.1 Enhanced Capture (eCAP)
        1. 6.14.1.1 eCAP Block Diagram
        2. 6.14.1.2 eCAP Synchronization
        3. 6.14.1.3 eCAP Electrical Data and Timing
          1. 6.14.1.3.1 eCAP Timing Requirements
          2. 6.14.1.3.2 eCAP Switching Characteristics
      2. 6.14.2 High-Resolution Capture (HRCAP)
        1. 6.14.2.1 eCAP and HRCAP Block Diagram
        2. 6.14.2.2 HRCAP Electrical Data and Timing
          1. 6.14.2.2.1 HRCAP Switching Characteristics
          2. 6.14.2.2.2 HRCAP Figure and Graph
      3. 6.14.3 Enhanced Pulse Width Modulator (ePWM)
        1. 6.14.3.1 Control Peripherals Synchronization
        2. 6.14.3.2 ePWM Electrical Data and Timing
          1. 6.14.3.2.1 ePWM Timing Requirements
          2. 6.14.3.2.2 ePWM Switching Characteristics
          3. 6.14.3.2.3 Trip-Zone Input Timing
            1. 6.14.3.2.3.1 Trip-Zone Input Timing Requirements
            2. 6.14.3.2.3.2 PWM Hi-Z Characteristics Timing Diagram
      4. 6.14.4 External ADC Start-of-Conversion Electrical Data and Timing
        1. 6.14.4.1 External ADC Start-of-Conversion Switching Characteristics
        2. 6.14.4.2 ADCSOCAO or ADCSOCBO Timing Diagram
      5. 6.14.5 High-Resolution Pulse Width Modulator (HRPWM)
        1. 6.14.5.1 HRPWM Electrical Data and Timing
          1. 6.14.5.1.1 High-Resolution PWM Characteristics
      6. 6.14.6 Enhanced Quadrature Encoder Pulse (eQEP)
        1. 6.14.6.1 eQEP Electrical Data and Timing
          1. 6.14.6.1.1 eQEP Timing Requirements
          2. 6.14.6.1.2 eQEP Switching Characteristics
      7. 6.14.7 Sigma-Delta Filter Module (SDFM)
        1. 6.14.7.1 SDFM Electrical Data and Timing
          1. 6.14.7.1.1 SDFM Timing Requirements When Using Asynchronous GPIO ASYNC Option
    15. 6.15 C28x Communications Peripherals
      1. 6.15.1  Controller Area Network (CAN)
      2. 6.15.2  Modular Controller Area Network (MCAN)
      3. 6.15.3  Fast Serial Interface (FSI)
        1. 6.15.3.1 FSI Transmitter
          1. 6.15.3.1.1 FSITX Electrical Data and Timing
            1. 6.15.3.1.1.1 FSITX Switching Characteristics
            2. 6.15.3.1.1.2 FSITX Timings
        2. 6.15.3.2 FSI Receiver
          1. 6.15.3.2.1 FSIRX Electrical Data and Timing
            1. 6.15.3.2.1.1 FSIRX Timing Requirements
            2. 6.15.3.2.1.2 FSIRX Switching Characteristics
            3. 6.15.3.2.1.3 FSIRX Timings
        3. 6.15.3.3 FSI SPI Compatibility Mode
          1. 6.15.3.3.1 FSITX SPI Signaling Mode Electrical Data and Timing
            1. 6.15.3.3.1.1 FSITX SPI Signaling Mode Switching Characteristics
            2. 6.15.3.3.1.2 FSITX SPI Signaling Mode Timings
      4. 6.15.4  Inter-Integrated Circuit (I2C)
        1. 6.15.4.1 I2C Electrical Data and Timing
          1. 6.15.4.1.1 I2C Timing Requirements
          2. 6.15.4.1.2 I2C Switching Characteristics
          3. 6.15.4.1.3 I2C Timing Diagram
      5. 6.15.5  Power Management Bus (PMBus) Interface
        1. 6.15.5.1 PMBus Electrical Data and Timing
          1. 6.15.5.1.1 PMBus Electrical Characteristics
          2. 6.15.5.1.2 PMBus Fast Mode Switching Characteristics
          3. 6.15.5.1.3 PMBus Standard Mode Switching Characteristics
      6. 6.15.6  Serial Communications Interface (SCI)
      7. 6.15.7  Serial Peripheral Interface (SPI)
        1. 6.15.7.1 SPI Controller Mode Timings
          1. 6.15.7.1.1 SPI Controller Mode Switching Characteristics Clock Phase 0
          2. 6.15.7.1.2 SPI Controller Mode Switching Characteristics Clock Phase 1
          3. 6.15.7.1.3 SPI Controller Mode Timing Requirements
          4. 6.15.7.1.4 SPI Controller Mode Timing Diagrams
        2. 6.15.7.2 SPI Peripheral Mode Timings
          1. 6.15.7.2.1 SPI Peripheral Mode Switching Characteristics
          2. 6.15.7.2.2 SPI Peripheral Mode Timing Requirements
          3. 6.15.7.2.3 SPI Peripheral Mode Timing Diagrams
      8. 6.15.8  Local Interconnect Network (LIN)
      9. 6.15.9  EtherCAT SubordinateDevice Controller (ESC)
        1. 6.15.9.1 ESC Features
        2. 6.15.9.2 ESC Subsystem Integrated Features
        3. 6.15.9.3 EtherCAT IP Block Diagram
        4. 6.15.9.4 EtherCAT Electrical Data and Timing
          1. 6.15.9.4.1 EtherCAT Timing Requirements
          2. 6.15.9.4.2 EtherCAT Switching Characteristics
          3. 6.15.9.4.3 EtherCAT Timing Diagrams
      10. 6.15.10 Universal Serial Bus (USB)
        1. 6.15.10.1 USB Electrical Data and Timing
          1. 6.15.10.1.1 USB Input Ports DP and DM Timing Requirements
          2. 6.15.10.1.2 USB Output Ports DP and DM Switching Characteristics
      11. 6.15.11 Universal Asynchronous Receiver-Transmitter (UART)
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Memory
      1. 7.3.1 C28x Memory Map
      2. 7.3.2 Control Law Accelerator (CLA) Memory Map
      3. 7.3.3 Flash Memory Map
        1. 7.3.3.1 Addresses of Flash Sectors
      4. 7.3.4 EMIF Chip Select Memory Map
      5. 7.3.5 Peripheral Registers Memory Map
      6. 7.3.6 Memory Types
        1. 7.3.6.1 Dedicated RAM (Mx and Dx RAM)
        2. 7.3.6.2 Local Shared RAM (LSx RAM)
        3. 7.3.6.3 Global Shared RAM (GSx RAM)
        4. 7.3.6.4 CPU Message RAM (CPU MSGRAM)
        5. 7.3.6.5 CLA Message RAM (CLA MSGRAM)
        6. 7.3.6.6 CLA - DMA Message RAM (CLA-DMA MSGRAM)
    4. 7.4 Identification
    5. 7.5 Bus Architecture – Peripheral Connectivity
    6. 7.6 Boot ROM
      1. 7.6.1 Device Boot
      2. 7.6.2 Device Boot Modes
      3. 7.6.3 Device Boot Configurations
      4. 7.6.4 GPIO Assignments
    7. 7.7 Security
      1. 7.7.1 Securing the Boundary of the Chip
        1. 7.7.1.1 JTAGLOCK
        2. 7.7.1.2 Zero-pin Boot
      2. 7.7.2 Dual-Zone Security
      3. 7.7.3 Disclaimer
    8. 7.8 Advanced Encryption Standard (AES) Accelerator
    9. 7.9 C28x (CPU1/CPU2) Subsystem
      1. 7.9.1  C28x Processor
        1. 7.9.1.1 Floating-Point Unit (FPU)
        2. 7.9.1.2 Fast Integer Division Unit
        3. 7.9.1.3 Trigonometric Math Unit (TMU)
        4. 7.9.1.4 VCRC Unit
        5. 7.9.1.5 Lockstep Compare Module (LCM)
      2. 7.9.2  Control Law Accelerator (CLA)
      3. 7.9.3  Embedded Real-Time Analysis and Diagnostic (ERAD)
      4. 7.9.4  Background CRC-32 (BGCRC)
      5. 7.9.5  Direct Memory Access (DMA)
      6. 7.9.6  Interprocessor Communication (IPC) Module
      7. 7.9.7  C28x Timers
      8. 7.9.8  Dual-Clock Comparator (DCC)
        1. 7.9.8.1 Features
        2. 7.9.8.2 Mapping of DCCx Clock Source Inputs
      9. 7.9.9  Nonmaskable Interrupt With Watchdog Timer (NMIWD)
      10. 7.9.10 Watchdog
      11. 7.9.11 Configurable Logic Block (CLB)
  9. Applications, Implementation, and Layout
    1. 8.1 Application and Implementation
    2. 8.2 Key Device Features
    3. 8.3 Application Information
      1. 8.3.1 Typical Application
        1. 8.3.1.1 Servo Drive Control Module
          1. 8.3.1.1.1 System Block Diagram
          2. 8.3.1.1.2 Servo Drive Control Module Resources
        2. 8.3.1.2 Solar Micro Inverter
          1. 8.3.1.2.1 System Block Diagram
          2. 8.3.1.2.2 Solar Micro Inverter Resources
        3. 8.3.1.3 EV Charging Station Power Module
          1. 8.3.1.3.1 System Block Diagram
          2. 8.3.1.3.2 EV Charging Station Power Module Resources
        4. 8.3.1.4 On-Board Charger (OBC)
          1. 8.3.1.4.1 System Block Diagram
          2. 8.3.1.4.2 OBC Resources
        5. 8.3.1.5 High-Voltage Traction Inverter
          1. 8.3.1.5.1 System Block Diagram
          2. 8.3.1.5.2 High-Voltage Traction Inverter Resources
  10. Device and Documentation Support
    1. 9.1 Getting Started and Next Steps
    2. 9.2 Device Nomenclature
    3. 9.3 Markings
    4. 9.4 Tools and Software
    5. 9.5 Documentation Support
    6. 9.6 Support Resources
    7. 9.7 Trademarks
    8. 9.8 Electrostatic Discharge Caution
    9. 9.9 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PZP|100
  • ZEJ|256
  • PTP|176
  • NMR|169
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Servo Drive Control Module Resources

Reference Designs and Associated Training Videos

48-V Three-Phase Inverter With Shunt-Based In-Line Motor Phase Current Sensing Evaluation Module
The BOOSTXL-3PHGANINV evaluation module features a 48-V/10-A three-phase GaN inverter with precision in-line shunt-based phase current sensing for accurate control of precision drives such as servo drives.

C2000 DesignDRIVE Development Kit for Industrial Motor Control
The DesignDRIVE Development Kit (IDDK) hardware offers an integrated servo drive design with full power stage to drive a high voltage three-phase motor and eases the evaluation of a range of position feedback, current sensing and control topologies.

C2000 DesignDRIVE position manager BoosterPack™ plug-in module
The PositionManager BoosterPack is a flexible low voltage platform intended for evaluating interfaces to absolute encoders and analog sensors like resolvers and SinCos transducers. When combined with the DesignDRIVE Position Manager software solutions this low-cost evaluation module becomes a powerful tool for interfacing many popular position encoder types such as EnDat, BiSS and T-format with C2000 Real-Time Control devices. C2000 Position Manager technology integrates interfaces to the most popular digital and analog position sensors onto C2000 Real-Time Controller, thus eliminating the need for external FPGAs for these functions.

C2000Ware MotorControl SDK
MotorControl SDK for C2000™ microcontrollers (MCU) is a cohesive set of software infrastructure, tools, and documentation designed to minimize C2000 real-time controller based motor control system development time targeted for various three-phase motor control applications. The software includes firmware that runs on C2000 motor control evaluation modules (EVMs) and TI designs (TIDs) which are targeted for industrial drives, robotics, appliances, and automotive applications. MotorControl SDK provides all the needed resources at every stage of development and evaluation for high performance motor control applications.

TIDM-02006 Distributed multi-axis servo drive over fast serial interface (FSI) reference design
This reference design presents an example distributed or decentralized multi-axis servo drive over Fast Serial Interface (FSI) using C2000™ real-time controllers. Multi-axis servo drives are used in many applications such as factory automation and robots. The cost per axis, performance and ease of use are always high concerns for such systems. FSI is a cost-optimized and reliable high speed communication interface with low jitter that can daisy-chain multiple C2000 microcontrollers. In this design, each TMS320F280049 or TMS320F280025 real-time controller serves as a real-time controller for a distributed axis, running motor current control loop. A single TMS320F28388D runs position and speed control loops for all axes. The same F2838x also executes a centralized motor control axis plus EtherCAT communication, leveraging its multiple cores. The design uses our existing EVM kits, the software is released within C2000WARE MotorControl SDK.

TIDM-02007 Dual-axis motor drive using fast current loop (FCL) and SFRA on a single MCU reference design
This reference design presents a dual-axis motor drive using fast current loop (FCL) and software frequency response analyzer (SFRA) technologies on a single C2000 controller. The FCL utilizes dual core (CPU, CLA) parallel processing techniques to achieve a substantial improvement in control bandwidth and phase margin, to reduce the latency between feedback sampling and PWM update, to achieve higher control bandwidth and maximum modulation index, to improve DC bus utilization by the drive and to increase speed range of the motor. The integrated SFRA tool enables developers to quickly measure the frequency response of the application to tune speed and current controllers. Given the system-level integration and performance of C2000 series, MCUs have the ability to support dual-axis motor drive requirements simultaneously that delivers very robust position control with higher performance. The software is released within C2000Ware MotorControl SDK.

EtherCAT Protocol: EtherCAT on C2000™ TMS320F2838x Device Family (Video)
This video covers details on the TMS320F2838x device EtherCAT SubordinateDevice (or SubDevice) controller features, details on the TMS320F2838x device EtherCAT SubDevice controller subsystem and device integration, and comparison of TMS320F2838x device EtherCAT IP versus Beckhoff Automation ET1100 EtherCAT ASIC.

EtherCAT-Based Connected Servo Drive Using Fast Current Loop on PMSM Application Report
This application report helps to evaluate EtherCAT® communication and to perform frequency response analysis of fast current loop (FCL) enabled control loops of a connected servo drive using TI's TMS320F28388D real-time controller.