SCDS403C february   2021  – july 2023 TMUX7308F , TMUX7309F

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Thermal Information
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Electrical Characteristics (Global)
    6. 7.6  ±15 V Dual Supply: Electrical Characteristics
    7. 7.7  ±20 V Dual Supply: Electrical Characteristics
    8. 7.8  12 V Single Supply: Electrical Characteristics
    9. 7.9  36 V Single Supply: Electrical Characteristics
    10. 7.10 Typical Characteristics
  9. Parameter Measurement Information
    1. 8.1  On-Resistance
    2. 8.2  Off-Leakage Current
    3. 8.3  On-Leakage Current
    4. 8.4  Input and Output Leakage Current Under Overvoltage Fault
    5. 8.5  Break-Before-Make Delay
    6. 8.6  Enable Delay Time
    7. 8.7  Transition Time
    8. 8.8  Fault Response Time
    9. 8.9  Fault Recovery Time
    10. 8.10 Charge Injection
    11. 8.11 Off Isolation
    12. 8.12 Crosstalk
    13. 8.13 Bandwidth
    14. 8.14 THD + Noise
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Flat On – Resistance
      2. 9.3.2 Protection Features
        1. 9.3.2.1 Input Voltage Tolerance
        2. 9.3.2.2 Powered-Off Protection
        3. 9.3.2.3 Fail-Safe Logic
        4. 9.3.2.4 Overvoltage Protection and Detection
        5. 9.3.2.5 Adjacent Channel Operation During Fault
        6. 9.3.2.6 ESD Protection
        7. 9.3.2.7 Latch-Up Immunity
        8. 9.3.2.8 EMC Protection
      3. 9.3.3 Bidirectional Operation
      4. 9.3.4 1.8 V Logic Compatible Inputs
      5. 9.3.5 Integrated Pull-Down Resistor on Logic Pins
    4. 9.4 Device Functional Modes
      1. 9.4.1 Normal Mode
      2. 9.4.2 Fault Mode
      3. 9.4.3 Truth Tables
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The TMUX7308F and TMUX7309F are modern complementary metal-oxide semiconductor (CMOS) analog multiplexers in 8:1 (single ended) and 4:1 (differential) configurations. The devices work well with dual supplies (±5 V to ±22 V), a single supply (8 V to 44 V), or asymmetric supplies (such as VDD = 12 V, VSS = –5 V). The overvoltage protection is available in powered and powered-off conditions, making the TMUX7308F and TMUX7309F devices suitable for applications where power supply sequencing cannot be precisely controlled.

The device blocks fault voltage up to +60 V or –60 V relative to ground in both powered and powered-off conditions. When no power supplies are present, the switch channels remain in the OFF state regardless of switch input conditions and logic control status. Under normal operation conditions, if the analog input signal level on any Sx pin exceeds the supply voltage (VDD or VSS) by a threshold voltage (VT), the channel turns OFF and the Sx pin becomes high impedance. When the fault channel is selected, the drain pin (D or Dx) is pulled to the supply (VDD or VSS) that was exceeded.

The low capacitance, low charge injection, and integrated fault protection enables the TMUX7308F and TMUX7309F devices to be used in front end data acquisition applications where high performance and high robustness are both critical. The devices are available in a standard TSSOP package and smaller WQFN package (ideal if PCB space is limited).

Device Information
PART NUMBER CONFIGURATION(1) PACKAGE(2) PACKAGE SIZE(3)
TMUX7308F
TMUX7309F
1 Channel 8:1
2 Channel 4:1
PW (TSSOP, 16) 5 mm × 6.4 mm
RRP (WQFN, 16) 4 mm × 4 mm
For all available packages, see the package option addendum at the end of the data sheet.
The package size (length × width) is a nominal value and includes pins, where applicable.