SCDS400B march   2022  – july 2023 TMUX7348F , TMUX7349F

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Thermal Information
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Electrical Characteristics (Global)
    6. 7.6  ±15 V Dual Supply: Electrical Characteristics
    7. 7.7  ±20 V Dual Supply: Electrical Characteristics
    8. 7.8  12 V Single Supply: Electrical Characteristics
    9. 7.9  36 V Single Supply: Electrical Characteristics
    10. 7.10 Typical Characteristics
  9. Parameter Measurement Information
    1. 8.1  On-Resistance
    2. 8.2  Off-Leakage Current
    3. 8.3  On-Leakage Current
    4. 8.4  Input and Output Leakage Current Under Overvoltage Fault
    5. 8.5  Break-Before-Make Delay
    6. 8.6  Enable Delay Time
    7. 8.7  Transition Time
    8. 8.8  Fault Response Time
    9. 8.9  Fault Recovery Time
    10. 8.10 Fault Flag Response Time
    11. 8.11 Fault Flag Recovery Time
    12. 8.12 Charge Injection
    13. 8.13 Off Isolation
    14. 8.14 Crosstalk
    15. 8.15 Bandwidth
    16. 8.16 THD + Noise
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Flat ON- Resistance
      2. 9.3.2 Protection Features
        1. 9.3.2.1 Input Voltage Tolerance
        2. 9.3.2.2 Powered-Off Protection
        3. 9.3.2.3 Fail-Safe Logic
        4. 9.3.2.4 Overvoltage Protection and Detection
        5. 9.3.2.5 Adjacent Channel Operation During Fault
        6. 9.3.2.6 ESD Protection
        7. 9.3.2.7 Latch-Up Immunity
        8. 9.3.2.8 EMC Protection
      3. 9.3.3 Overvoltage Fault Flags
      4. 9.3.4 Bidirectional and Rail-to-Rail Operation
      5. 9.3.5 1.8 V Logic Compatible Inputs
      6. 9.3.6 Integrated Pull-Down Resistor on Logic Pins
    4. 9.4 Device Functional Modes
      1. 9.4.1 Normal Mode
      2. 9.4.2 Fault Mode
      3. 9.4.3 Truth Tables
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bidirectional and Rail-to-Rail Operation

The TMUX7348F and TMUX7349F conducts equally well from source (Sx) to drain (D or Dx) or from drain (D or Dx) to source (Sx). Each signal path has very similar characteristics in both directions. It is important to note, however, that the overvoltage protection is implemented only on the source (Sx) side. The voltage on the drain is only allowed to swing between VFP and VFN and no overvoltage protection is available on the drain side.

The primary supplies (VDD and VSS) define the on-resistance profile of the switch channel, whereas the fault voltage supplies (VFP and VFN) define the signal range that can be passed through from source to drain of the device. It is good practice to use voltages on VFP and VFN that are lower than VDD and VSS to take advantage of the flat on-resistance region of the device for better input-to-output linearity. The flatest on-resistance region extends from VSS to roughly 3 V below VDD. Once the signal is within 3 V of VDD the on-resistance will exponentially increase and may impact desired signal transmission.