SCDS453B June   2024  – September 2024 TMUXS7614D

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Thermal Information
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Source or Drain Current through Switch
    6. 5.6  Electrical Characteristics (Global)
    7. 5.7  Electrical Characteristics (±15 V Dual Supply)
    8. 5.8  Switching Characteristics (±15 V Dual Supply)
    9. 5.9  Electrical Characteristics (±20 V Dual Supply)
    10. 5.10 Switching Characteristics (±20 V Dual Supply)
    11. 5.11 Electrical Characteristics (+37.5 V/–12.5 V Dual Supply)
    12. 5.12 Switching Characteristics (+37.5 V/–12.5 V Dual Supply)
    13. 5.13 Electrical Characteristics (12 V Single Supply)
    14. 5.14 Switching Characteristics (12 V Single Supply)
    15. 5.15 SPI Timing Characteristics (2.7 V to 5.5 V)
    16. 5.16 SPI Timing Characteristics (1.8 V to 2.7 V)
    17. 5.17 Timing Diagrams
    18. 5.18 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1  On-Resistance
    2. 6.2  Off-Leakage Current
    3. 6.3  On-Leakage Current
    4. 6.4  tON and tOFF Time
    5. 6.5  Break-Before-Make
    6. 6.6  Charge Injection
    7. 6.7  Off Isolation
    8. 6.8  Channel-to-Channel Crosstalk
    9. 6.9  Bandwidth
    10. 6.10 THD + Noise
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Bidirectional Operation
      2. 7.3.2 Rail-to-Rail Operation
      3. 7.3.3 1.8V Logic Compatible Inputs
      4. 7.3.4 Flat On-Resistance
      5. 7.3.5 Power-Up Sequence Free
    4. 7.4 SPI Operation
      1. 7.4.1 Address Mode
      2. 7.4.2 Burst Mode
      3. 7.4.3 Daisy Chain Mode
      4. 7.4.4 Error Detection
        1. 7.4.4.1 Address R/W Error Flag
        2. 7.4.4.2 SCLK Count Error Flag
        3. 7.4.4.3 CRC (Cyclic Redundancy Check) Enable and Error Flag
        4. 7.4.4.4 Clearing Error Flags
      5. 7.4.5 Software Reset
    5. 7.5 Device Functional Modes
    6. 7.6 Register Map
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Thermal Considerations
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information
    2. 11.2 Mechanical Data

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • ZEM|30
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Daisy Chain Mode

Multiple TMUXS7614D can be chained together to operate similarly to a shift register. All SPI pins are shared across all devices in the chain, but the SDO pin is connected to the SDI of the next device in the chain. Daisy chain mode is entered by sending the command "0x2500". When multiple devices are configured in hardware to be in daisy chain mode the first command sent is expected to be the daisy chain mode entry command. As the first device is entering daisy chain mode it is simultaneously sending out "0x2500" to enter the next device into daisy chain mode. Once the series of devices is in daisy chain mode the CS pin will need to be pulled low to send switch state commands.

The SDO pin acts as an eight cycle delayed SDI of the same device. After all devices in the chain have received a switch state command and the CS pin is pulled high- each device will enter the switch states that were assigned to it. While in daisy chain mode all commands will only target the switch state registers so configuration registers will be unavailable. To leave daisy chain mode a power cycle of VL will be necessary. The layout for daisy-chain is extremely simple due to the flow through routing capable pins as shown in the Section 8.5.2