SLASEE9B September   2017  – December 2017 TPA3221

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Audio Characteristics (BTL)
    7. 7.7 Audio Characteristics (PBTL)
    8. 7.8 Typical Characteristics, BTL Configuration, AD-mode
    9. 7.9 Typical Characteristics, PBTL Configuration, AD-mode
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagrams
    3. 9.3 Feature Description
      1. 9.3.1 Internal LDO
        1. 9.3.1.1 Input Configuration, Gain Setting And Master / Slave Operation
      2. 9.3.2 Gain Setting And Master / Slave Operation
      3. 9.3.3 AD-Mode and HEAD-Mode PWM Modulation
      4. 9.3.4 Oscillator
      5. 9.3.5 Input Impedance
      6. 9.3.6 Error Reporting
    4. 9.4 Device Functional Modes
      1. 9.4.1 Powering Up
        1. 9.4.1.1 Startup Ramp Time
      2. 9.4.2 Powering Down
        1. 9.4.2.1 Power Down Ramp Time
      3. 9.4.3 Device Reset
      4. 9.4.4 Device Soft Mute
      5. 9.4.5 Device Protection System
        1. 9.4.5.1 Overload and Short Circuit Current Protection
        2. 9.4.5.2 Signal Clipping and Pulse Injector
        3. 9.4.5.3 DC Speaker Protection
        4. 9.4.5.4 Pin-to-Pin Short Circuit Protection (PPSC)
        5. 9.4.5.5 Overtemperature Protection OTW and OTE
        6. 9.4.5.6 Undervoltage Protection (UVP), Overvoltage Protection (OVP) and Power-on Reset (POR)
        7. 9.4.5.7 Fault Handling
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Stereo BTL Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedures
          1. 10.2.1.2.1 Decoupling Capacitor Recommendations
          2. 10.2.1.2.2 PVDD Capacitor Recommendation
          3. 10.2.1.2.3 BST capacitors
          4. 10.2.1.2.4 PCB Material Recommendation
      2. 10.2.2 Typical Application, Differential (2N), AD-Mode PBTL (Outputs Paralleled before LC filter)
        1. 10.2.2.1 Design Requirements
      3. 10.2.3 Typical Application, Differential (2N), AD-Mode PBTL (Outputs Paralleled after LC filter)
        1. 10.2.3.1 Design Requirements
  11. 11Power Supply Recommendations
    1. 11.1 Power Supplies
      1. 11.1.1 VDD Supply
      2. 11.1.2 AVDD and GVDD Supplies
      3. 11.1.3 PVDD Supply
      4. 11.1.4 BST Supply
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Examples
      1. 12.2.1 BTL Application Printed Circuit Board Layout Example
      2. 12.2.2 PBTL (Outputs Paralleled before LC filter) Application Printed Circuit Board Layout Example
      3. 12.2.3 PBTL (Outputs Paralleled after LC filter) Application Printed Circuit Board Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Community Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Supply voltage PVDD to GND(2) –0.3 37 V
BST_X to GVDD(2) –0.3 37 V
BST1_M, BST1_P, BST2_M, BST2_P to GND(2) –0.3 47.8 V
VDD to GND –0.3 43 V
GVDD to GND(2) –0.3 5.5 V
AVDD to GND –0.3 5.5 V
Interface pins OUT1_M, OUT1_P, OUT2_M, OUT2_P to GND(2) –0.3 43 V
IN1_M, IN1_P, IN2_M, IN2_P to GND –0.3 5.5 V
HEAD, FREQ_ADJ, GAIN/SLV, CMUTE, RESET, OSCP, OSCM to GND –0.3 5.5 V
FAULT, OTW_CLIP to GND –0.3 5.5 V
Continuous sink current, FAULT, OTW_CLIP to GND 9 mA
TJ Operating junction temperature range –40 150 °C
Tstg Storage temperature range –40 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
These voltages represents the DC voltage + peak AC waveform measured at the terminal of the device in all conditions.

ESD Ratings

VALUE UNIT
VESD Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1) ±1000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±250 V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN TYP MAX UNIT
PVDD Power-stage supply DC supply voltage 7 30 32 V
VDD(1) Supply voltage for internal LDO regulator to supply GVDD and AVDD DC supply voltage 7 32 V
External supply for VDD, GVDD and AVDD. Internal LDO bypassed DC supply voltage 4.5 5 5.5 V
AVDD Supply voltage for analog circuits DC supply voltage 4.5 5 5.5 V
GVDD Supply voltage for gate-drive circuitry DC supply voltage 4.5 5 5.5 V
LOUT(BTL) Output filter inductance Minimum output inductance at IOC 5 10 μH
LOUT(PBTL) Output filter inductance, PBTL before the LC filter Minimum output inductance at IOC 5 10
Output filter inductance, PBTL after the LC filter Minimum output inductance at half IOC , each inductor 5 10
FPWM PWM frame rate selectable for AM interference avoidance; 1% Resistor tolerance Nominal 575 600 625 kHz
AM1 510 533 555
AM2 460 480 500
R(FREQ_ADJ) PWM frame rate programming resistor Nominal; Master mode 49.5 50 50.5
AM1; Master mode 29.7 30 30.3
AM2; Master mode 9.9 10 10.1
CPVDD PVDD close decoupling capacitors 1.0 μF
V(FREQ_ADJ) Voltage on FREQ_ADJ pin for slave mode operation Slave Mode (Connect to AVDD) 5 V
VDD must be connected to a supply of 5V in LDO bypass mode; OR 7V to 30V with LDO active. VDD can be connected directly to PVDD in LDO bypass mode, but must not exceed PVDD voltage.

Thermal Information

THERMAL METRIC(1) TPA3221 UNIT
DDV 44-PINS HTSSOP
JEDEC STANDARD 4 LAYER PCB FIXED 85°C HEATSINK TEMPERATURE(2)
RθJA Junction-to-ambient thermal resistance 44.8 5.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 1.1 2.0 °C/W
RθJB Junction-to-board thermal resistance 14.9 n/a °C/W
ψJT Junction-to-top characterization parameter 0.6 n/a °C/W
ψJB Junction-to-board characterization parameter 14.7 n/a °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a n/a °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
Thermal data are obtained with 85°C heat sink temperature using thermal compound with 0.7W/mK thermal conductivity and 2mil thickness. In this model heat sink temperature is considered to be the ambient temperature and only path for dissipation is to the heatsink.

Electrical Characteristics

PVDD_X = 30 V, VDD = 5 V, GVDD = 5 V, TC (Case temperature) = 75 °C, fS = 600 kHz, unless otherwise specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

INTERNAL VOLTAGE REGULATOR AND CURRENT CONSUMPTION
AVDD Voltage regulator. Only used as reference node when supplied by internal LDO. Voltage regulator bypassed for VDD = 5 V. VDD = 30 V 5 V
IVDD VDD supply current. LDO mode (VDD > 7 V) Operating, no audio signal 25 mA
Reset mode 118 µA
VDD supply current. LDO bypass mode (VDD = 5 V) Operating, no audio signal 150
Reset mode 50
IAVDD Gate-supply current. LDO bypass mode (VDD = 5 V) Operating, no audio signal 10 mA
Reset mode 1
IGVDD Gate-supply current. LDO bypass mode (VDD = 5 V), AD-mode modulation 50% duty cycle 16
Reset mode 50 µA
Gate-supply current. LDO bypass mode (VDD = 5 V), HEAD-mode modulation HEAD-mode modulation 16 mA
Reset mode 50 µA
IPVDD Total PVDD idle current, AD-mode modulation, BTL 50% duty cycle with recommended output filter 15 mA
50% duty cycle with recommended output filter, TC = 25 ºC 13
Reset mode, No switching 1
Total PVDD idle current, HEAD-mode modulation, BTL HEAD-mode modulation with recommended output filter 10
HEAD-mode with recommended output filter, TC = 25 ºC 9
Reset mode, No switching 1
ANALOG INPUTS
VIN Maximum input voltage swing ±2.8 V
IIN Maximum input current -1 1 mA
G Inverting voltage Gain, VOUT/VIN(Master Mode) R1 = 5.6 kΩ, R2 = OPEN 18 dB
R1 = 20 kΩ, R2 = 100 kΩ 24
R1 = 39 kΩ, R2 = 100 kΩ 30
R1 = 47 kΩ, R2 = 75 kΩ 34
Inverting voltage Gain, VOUT/VIN(Slave Mode) R1 = 51 kΩ, R2 = 51 kΩ 18
R1 = 75 kΩ, R2 = 47 kΩ 24
R1 = 100 kΩ, R2 = 39 kΩ 30
R1 = 100 kΩ, R2 = 16 kΩ 34
RIN Input resistance G = 18 dB 48
G = 24 dB 24
G = 30 dB 12
G = 34 dB 7.7
OSCILLATOR
fOSC(IO) (1) Nominal, Master Mode FPWM × 6 3.45 3.6 3.75 MHz
AM1, Master Mode 3.06 3.198 3.33
AM2, Master Mode 2.76 2.88 3
VIH High level input voltage 1.88 V
VIL Low level input voltage 1.65 V
EXTERNAL OSCILLATOR (Slave Mode)
fOSC(IO) CLK input on OSCM/OSCP (Slave Mode) 2.3 3.78 MHz

OUTPUT-STAGE MOSFETs
RDS(on) Drain-to-source resistance, low side (LS) TJ = 25 °C, Excludes metallization resistance,
GVDD = 5 V
70
Drain-to-source resistance, high side (HS) 70
I/O PROTECTION
Vuvp,AVDD Undervoltage protection limit, AVDD 4 V
Vuvp,AVDD,hyst (2) Undervoltage protection hysteresis, AVDD 0.1 V
Vuvp,PVDD Undervoltage protection limit, PVDD_x 6.4 V
Vuvp,PVDD,hyst (2) Undervoltage protection hysteresis, PVDD_x 0.45 V
Vovp,PVDD Overvoltage protection limit, PVDD_x 34 V
Vovp,PVDD,hyst (2) Overvoltage protection hysteresis, PVDD_x 0.45 V
OTW Overtemperature warning, OTW_CLIP (2) 115 125 135 °C
OTWhyst (2) Temperature drop needed below OTW temperature for OTW_CLIP to be inactive after OTW event. 20 °C
OTE(2) Overtemperature error 145 155 165 °C
OTEhyst (2) A reset needs to occur for FAULT to be released following an OTE event 20 °C
OTE-OTW(differential) (2) OTE-OTW differential 25 °C
OLPC Overload protection counter fPWM = 600 kHz (1024 PWM cycles) 1.7 ms
IOC, BTL Overcurrent limit protection, speaker output current Nominal peak current in 1Ω load 10 A
IOC, PBTL 20 A
IDCspkr, BTL DC Speaker Protection Current Threshold BTL current imbalance threshold 1.8 A
IDCspkr, PBTL PBTL current imbalance threshold 3.6 A
IOCT Overcurrent response time Time from switching transition to flip-state induced by overcurrent. 150 ns
IPD Output pulldown current of each half Connected when RESET is active to provide bootstrap charge. Not used in SE mode. 3 mA
STATIC DIGITAL SPECIFICATIONS
VIH High level input voltage HEAD, OSCM, OSCP,CMUTE, RESET 1.9 V
VIL Low level input voltage 0.8 V
Ilkg Input leakage current 100 μA
OTW/SHUTDOWN (FAULT)
RINT_PU Internal pullup resistance, OTW_CLIP to AVDD, FAULT to AVDD 20 26 32
VOH High level output voltage Internal pullup resistor 3 3.3 3.6 V
VOL Low level output voltage IO = 4 mA 200 500 mV
Device fanout OTW_CLIP, FAULT No external pullup 30 devices
Nominal, AM1 and AM2 use same internal oscillator with fixed ratio 4 : 4.5 : 5
Specified by design.

Audio Characteristics (BTL)

PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 30 V, VDD = 5 V, GVDD = 5 V, RL = 4 Ω, fS = 600 kHz, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, AD-Modulation, AES17 + AUX-0025 measurement filters, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PO Power output per channel RL = 3 Ω, 10% THD+N 112 W
RL = 4 Ω, 10% THD+N 105
RL = 3 Ω, 1% THD+N 100
RL = 4 Ω, 1% THD+N 88
THD+N Total harmonic distortion + noise 1 W 0.02 %
Vn Output integrated noise A-weighted, AES17 filter, Input Capacitor Grounded, Gain = 18 dB 75 μV
|VOS| Output offset voltage Inputs AC coupled to GND 20 60 mV
SNR Signal-to-noise ratio(1) A-weighted, Gain = 18 dB 108 dB
DNR Dynamic range A-weighted, Gain = 18 dB 109 dB
Pidle Power dissipation due to idle losses (IPVDD_X) PO = 0, all outputs switching, AD-modulation, TC = 25°C(2) 0.37 W
PO = 0, all outputs switching, HEAD-modulation, TC = 25°C(2) 0.25 W
SNR is calculated relative to 1% THD+N output level.
Actual system idle losses also are affected by core losses of output inductors.

Audio Characteristics (PBTL)

PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 30 V, VDD = 5 V, GVDD = 5 V, RL = 2 Ω, fS = 600 kHz, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, Pre-Filter PBTL, AD-Modulation, AES17 + AUX-0025 measurement filters, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PO Power output per channel RL = 2 Ω, 10% THD+N 208 W
RL = 3 Ω, 10% THD+N 155
RL = 4 Ω, 10% THD+N 120
RL = 2 Ω, 1% THD+N 170
RL = 3 Ω, 1% THD+N 125
RL = 4 Ω, 1% THD+N 98
THD+N Total harmonic distortion + noise 1 W 0.02 %
Vn Output integrated noise A-weighted, AES17 filter, Input Capacitor Grounded, Gain = 18 dB 75 μV
|VOS| Output offset voltage Inputs AC coupled to GND 20 60 mV
SNR Signal to noise ratio(1) A-weighted, Gain = 18 dB 108 dB
DNR Dynamic range A-weighted, Gain = 18 dB 110 dB
Pidle Power dissipation due to idle losses (IPVDD_X) PO = 0, all outputs switching, AD-modulation, TC = 25°C(2) 0.20 W
PO = 0, all outputs switching, HEAD-modulation, TC = 25°C(2) 0.17 W
SNR is calculated relative to 1% THD+N output level.
Actual system idle losses are affected by core losses of output inductors.

Typical Characteristics, BTL Configuration, AD-mode

All Measurements taken at audio frequency = 1 kHz, PVDD_X = 30 V, VDD = 5 V, GVDD = 5 V, RL = 4 Ω, fS = 600 kHz, 18 dB, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, AD-Modulation, AES17 + AUX-0025 measurement filters, unless otherwise noted.

TPA3221 D001_SLASEE9.gif
Figure 1. Total Harmonic Distortion + Noise vs Output Power, AD-mode
TPA3221 D003_SLASEE9.gif
Figure 3. Total Harmonic Distortion+Noise vs Frequency, AD-mode
TPA3221 D005_SLASEE9.gif
Figure 5. Output Power vs Supply Voltage, AD-mode
TPA3221 D007_SLASEE9.gif
Figure 7. System Efficiency vs Output Power, AD-mode
TPA3221 D009_SLASEE9.gif
Figure 9. System Power Loss vs Output Power, AD-mode
TPA3221 D011_SLASEE9.gif
Figure 11. Noise Amplitude vs Frequency, AD-mode
TPA3221 D013_SLASEE9.gif
18 kHz + 19 kHz Ratio 1 : 1
Figure 13. CCIF Intermodulation, AD-mode
TPA3221 D015_SLASEE9.gif
Figure 15. Channel to Channel Crosstalk vs Frequency, AD-mode
TPA3221 D002_SLASEE9.gif
Figure 2. Total Harmonic Distortion+Noise vs Frequency, AD-mode
TPA3221 D004_SLASEE9.gif
Figure 4. Output Power vs Supply Voltage, AD-mode
TPA3221 D006_SLASEE9.gif
Figure 6. System Efficiency vs Output Power, AD-mode
TPA3221 D008_SLASEE9.gif
Figure 8. System Efficiency vs Output Power, AD-mode
TPA3221 D010_SLASEE9.gif
Figure 10. Output Power vs Case Temperature, AD-mode
TPA3221 D012_SLASEE9.gif
18 kHz + 19 kHz Ratio 1 : 1
Figure 12. CCIF Intermodulation, AD-mode
TPA3221 D014_SLASEE9.gif
Figure 14. Power Supply Rejection Ratio vs Frequency, AD-mode
TPA3221 D026_SLASEE9.gif
Figure 16. Idle Current vs Supply Voltage

Typical Characteristics, PBTL Configuration, AD-mode

All Measurements taken at audio frequency = 1 kHz, PVDD_X = 30 V, VDD = 5 V, GVDD = 5 V, RL = 2 Ω, fS = 600 kHz, 18 dB, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, Pre-Filter PBTL, AD Modulation, AES17 + AUX-0025 measurement filters, unless otherwise noted.

TPA3221 D016_SLASEE9.gif
Figure 17. Total Harmonic Distortion+Noise vs Output Power, AD-mode
TPA3221 D018_SLASEE9.gif
Figure 19. Total Harmonic Distortion+Noise vs Frequency, AD-mode
TPA3221 D020_SLASEE9.gif
Figure 21. Output Power vs Supply Voltage, AD-mode
TPA3221 D022_SLASEE9.gif
Figure 23. System Power Loss vs Output Power, AD-mode
TPA3221 D024_SLASEE9.gif
18 kHz + 19 kHz Ratio 1 : 1
Figure 25. CCIF Intermodulation vs Frequency, AD-mode
TPA3221 D017_SLASEE9.gif
Figure 18. Total Harmonic Distortion + Noise vs Frequency, AD-mode
TPA3221 D019_SLASEE9.gif
Figure 20. Output Power vs Supply Voltage, AD-mode
TPA3221 D021_SLASEE9.gif
Figure 22. System Efficiency vs Output Power, AD-mode
TPA3221 D023_SLASEE9.gif
Figure 24. Output Power vs Case Temperature, AD-mode
TPA3221 D025_SLASEE9.gif
18 kHz + 19 kHz Ratio 1 : 1
Figure 26. CCIF Intermodulation vs Frequency, AD-mode