SLASEM8A January   2019  – March 2019 TPA3255-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Total Harmonic Distortion
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Audio Characteristics (BTL)
    7. 6.7  Audio Characteristics (SE)
    8. 6.8  Audio Characteristics (PBTL)
    9. 6.9  Typical Characteristics, BTL Configuration
    10. 6.10 Typical Characteristics, SE Configuration
    11. 6.11 Typical Characteristics, PBTL Configuration
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Error Reporting
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device Protection System
        1. 8.4.1.1 Overload and Short Circuit Current Protection
        2. 8.4.1.2 Signal Clipping and Pulse Injector
        3. 8.4.1.3 DC Speaker Protection
        4. 8.4.1.4 Pin-to-Pin Short Circuit Protection (PPSC)
        5. 8.4.1.5 Overtemperature Protection OTW and OTE
        6. 8.4.1.6 Undervoltage Protection (UVP) and Power-on Reset (POR)
        7. 8.4.1.7 Fault Handling
        8. 8.4.1.8 Device Reset
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Stereo BTL Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedures
          1. 9.2.1.2.1 Decoupling Capacitor Recommendations
          2. 9.2.1.2.2 PVDD Capacitor Recommendation
          3. 9.2.1.2.3 PCB Material Recommendation
          4. 9.2.1.2.4 Oscillator
      2. 9.2.2 Application Curves
      3. 9.2.3 Typical Application, Single Ended (1N) SE
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedures
        3. 9.2.3.3 Application Curves
      4. 9.2.4 Typical Application, Differential (2N) PBTL
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedures
        3. 9.2.4.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Power Supplies
      1. 10.1.1 VDD Supply
      2. 10.1.2 GVDD_X Supply
      3. 10.1.3 PVDD Supply
    2. 10.2 Powering Up
    3. 10.3 Powering Down
    4. 10.4 Thermal Design
      1. 10.4.1 Thermal Performance
      2. 10.4.2 Thermal Performance with Continuous Output Power
      3. 10.4.3 Thermal Performance with Non-Continuous Output Power
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
      1. 11.2.1 BTL Application Printed Circuit Board Layout Example
      2. 11.2.2 SE Application Printed Circuit Board Layout Example
      3. 11.2.3 PBTL Application Printed Circuit Board Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Thermal Performance with Non-Continuous Output Power

As audio signals often have a peak to average ratio larger than one (average level below maximum peak output), the thermal performance for audio signals can be illustrated using burst signals with different burst ratios.

TPA3255-Q1 MusicExample.gifFigure 34. Example of audio signal

A burst signal is characterized by the high-level to low-level ratio as well as the duration of the high level and low level, e.g. a burst 1:4 stimuli is a single period of high level followed by 4 cycles of low level.

TPA3255-Q1 Burst.gifFigure 35. Example of 1:4 Burst Signal

The following analysis of thermal performance for TPA3255-Q1 is made with the heatsink temperature controlled to 75°C.

The device is not thermally limited with 8-Ω load, but depending on the burst stimuli for operation at 75ºC heatsink temperature some thermal limitations may occur with a lower load impedance, depending on switching frequency and average to maximum power ratio. The figure below shows burst performance with a signal power ratio of 1:16 (low cycles power level 1/16 of the high cycles power level) and 1:8 .

TPA3255-Q1 C027_SLASEA8.pngFigure 36. Maximum Burst Output Power vs Frequency, BTL, 4Ω Load, Each Channel, TC = 75°C, Power Ratio 1:16
TPA3255-Q1 C028_SLASEA8.pngFigure 37. Maximum Burst Output Power vs Frequency, BTL, 4Ω Load, Each Channel, TC = 75°C, Power Ratio 1:8