SLLSE96F September   2011  – October 2015 TPD12S016

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Conforms to HDMI Compliance Tests Without any External Components
      2. 7.3.2  IEC 61000-4-2 ESD Protection
      3. 7.3.3  Supports HDMI 1.4 Data Rate
      4. 7.3.4  Matches Class D and Class C Pin Mapping
      5. 7.3.5  8-Channel ESD Lines for Four Differential Pairs with Ultra-low Differential Capacitance Matching (0.05 pF)
      6. 7.3.6  On-Chip Load Switch With 55-mA Current Limit Feature at the HDMI 5V_OUT Pin
      7. 7.3.7  Auto-direction Sensing I2C Level Shifter With One-Shot Circuit to Drive a Long HDMI Cable (750-pF Load)
      8. 7.3.8  Back-Drive Protection on HDMI Connector Side Ports
      9. 7.3.9  Integrated Pullup and Pulldown Resistors per HDMI Specification
      10. 7.3.10 Space Saving 24-Pin RKT Package and 24-TSSOP Package
      11. 7.3.11 DDC/CEC LEVEL SHIFT Circuit Operation
      12. 7.3.12 DDC/CEC Level Shifter Operational Notes For VCCA = 1.8 V
      13. 7.3.13 Rise-Time Accelerators
      14. 7.3.14 Noise Considerations
      15. 7.3.15 Resistor Pullup Value Selection
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Example 1: HDMI Controller Using One Control Line
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Example 2: HDMI Controller Using CT_HPD and LS_OE
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
      1. 10.2.1 TPD12S016RKT
      2. 10.2.2 TPD12S016PW
  11. 11Device and Documentation Support
    1. 11.1 Community Resources
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RKT|24
  • PW|24
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCCA Supply voltage –0.3 4.0 V
VCC5V Supply voltage –0.3 6.0 V
VI Input voltage (1) SCL_A, SDA_A, CEC_A –0.3 4.0 V
SCL_B, SDA_B, CEC_B –0.3 6.0
CT_HPD, LS_OE –0.3 4.0
D, CLK –0.3 6.0
VO Voltage applied to any output in the high-impedance or power-off state(1) SCL_A, SDA_A, CEC_A, CT_HPD, LS_OE –0.3 4.0 V
SCL_B, SDA_B, CEC_B –0.3 6.0
VO Voltage applied to any output in the high or low state(1)(2) SCL_A, SDA_A, CEC_A, CT_HPD, LS_OE –0.3 VCCA + 0.5 V
SCL_B, SDA_B, CEC_B –0.3 5V_OUT + 0.5
IIK Input clamp current VI < 0 –50 mA
IOK Output clamp current VO < 0 –50 mA
Continuous current through 5V_OUT, or GND ±100 mA
Tstg Storage temperature –65 150 °C
(1) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(2) The package thermal impedance is calculated in accordance with JESD 51-7.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 LS_OE, CT_HPD, SCL_A, SDA_A, CEC_A, HPD_A, VCCA ±2000 V
Dx, CLKx, SCL_B, SDA_B, CEC_B, HPD_B , 5V_OUT ±15000
Charged-device model (CDM), per JEDEC specification JESD22-C101 ±1000
IEC 61000-4-2 Contact Discharge Dx, CLKx, SCL_B, SDA_B, CEC_B, HPD_B , 5V_OUT ±8000

6.3 Recommended Operating Conditions

over recommended operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCCA Supply voltage 1.1 3.6 V
VCC5V Supply voltage 4.5 5.5 V
VIH High-level input voltage SCL_A, SDA_A VCCA =1.1 V to 3.6 V 0.7 × VCCA VCCA V
CEC_A VCCA =1.1 V to 3.6 V 0.7 × VCCA VCCA V
CT__HPD, LS_OE VCCA =1.1 V to 3.6 V 1.0 VCCA V
SCL_B, SDA_B 5V_OUT = 5.0 V 0.7 × 5V_OUT 5V_OUT V
CEC_B 5V_OUT = 5.0 V 0.7 × V3P3(1) V3P3
HPD_B 5V_OUT = 5.0 V 2.0 5V_OUT
VIL Low-level input voltage SCL_A, SDA_A VCCA =1.1 V to 3.6 V –0.5 0.082 × VCCA V
CEC_A VCCA =1.1 V to 3.6 V –0.5 0.082 × VCCA V
CT_HPD, LS_OE VCCA =1.1 V to 3.6 V –0.5 0.4 V
SCL_B, SDA_B 5V_OUT = 5.0 V –0.5 0.3 × 5V_OUT V
CEC_B 5V_OUT = 5.0 V –0.5 0.3 × V3P3 V
HPD_B 5V_OUT = 5.0 V 0 0.8 V
VILC (contention) Low-level input voltage SCL_A, SDA_A, CEC_A VCCA =1.1 V to 3.6 V –0.5 0.065 × VCCA V
VOL - VILC Delta between VOL and VILC SCL_A, SDA_A, CEC_A VCCA =1.1 V to 3.6 V 0.1 × VCCA mV
TA Operating free-air temperature –40 85 °C
(1) The V3P3 is an internal 3.3V power supply node. The V3P3 is generated from the 5V supply pin through the on-chip LDO.

6.4 Thermal Information

THERMAL METRIC(1) TPD12S016 UNIT
RKT (UQFN) PW (TSSOP)
24 PINS 24 PINS
RθJA Junction-to-ambient thermal resistance 77.9 88.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 24.0 26.5 °C/W
RθJB Junction-to-board thermal resistance 29.3 43.5 °C/W
ψJT Junction-to-top characterization parameter 0.5 1.1 °C/W
ψJB Junction-to-board characterization parameter 29.3 43.0 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
HIGH SPEED ESD LINES: DX, CLKX
IIO Current through ESD clamp ports VCCA = 3.3 V,
VCC5V = 5.0 V,
VIO = 3.3 V
D, CLK 0.01 0.5 µA
VDL Diode forward voltage ID = 8 mA Lower clamp diode 0.8 1.0 V
RDYN Dynamic resistance I = 1 A D, CLK 1 Ω
CIO IO capacitance PW Package VCC = 5 V,
VIO = 2.5 V
ƒ = 1 MHz
D, CLK 1.0 pF
RKT Package 1.2
ΔCIO_TMDS Differential capacitance for the Dx+, Dx– lines VCC = 5 V,
VIO = 2.5 V
ƒ = 1 MHz
D, CLK 0.05 pF
VBR Break-down voltage IIO = 1 mA 6.5 9 V
LOAD SWITCH VCC5V, 5V_OUT
ICC5V Supply current at VCC5V VCC5V = 5 V, 5V OUT =Open, LS_OE = GND, CT_HPD = GND 1 45 µA
Supply current at VCC5V VCC5V = 5 V, 5V OUT =Open, LS_OE = GND, CT_HPD = 3.3 V 4 50 µA
ISC Short circuit current at 5V_OUT VCC5V = 5 V, 5V_OUT = GND 100 150 200 mA
VDROP 5V_OUT output voltage drop VCC5V = 5 V, I5V_OUT = 55 mA 35 50 mV
TON Turn on time, VCC5V to 5V_OUT CLOAD = 0.1 µF, RLOAD = 500 Ω 77 µs
TOFF Turn off time, VCC5V to 5V_OUT CLOAD = 0.1 µF, RLOAD = 500 Ω 7.0 µs
TSHUT Thermal Shutdown Shutdown threshold, TRIP(1) 140 °C
HYST(2) 12
VOLTAGE LEVEL SHIFTER – SCL, SDA LINES (x_A AND x_B PORTS)
VOHA IOH = –20 μA VI = VIH VCCA = 1.1 V to 3.6 V VCCA × 0.80 V
VOLA IOL = 20 µA VI = VIL VCCA = 1.1 V to 3.6 V VCCA × 0.17 V
VOHB IOH = –20 μA VI = VIH 5VOUT × 0.90 V
VOLB IOL = 3 mA VI = VIL 0.4 V
ΔVT Hysteresis at the SDx_A (VT+ – VT–) VCCA = 1.1 V to 3.6 V 40 mV
ΔVT Hysteresis at the SDx_B (VT+ – VT–) VCCA = 1.1 V to 3.6 V 400 mV
RPU (Internal pullup) SCL_A, SDA_A Pull-up connected to VCCA rail 10
SCL_B, SDA_B Pull-up connected to 5-V rail 1.75
IPULLUPAC Transient boosted pullup current
(rise-time accelerator)
SCL_B, SDA_B Pull-up connected to 5-V rail 15 mA
Ioff A port VCCA = 0 V, VI or VO = 0 to 3.6 V VCCA = 0 V ±5 μA
B port 5VOUT = 0 V, VI or VO = 0 to 5.5 V VCCA = 0 V to 3.6 V ±5
IOZ B port VO = VCCO or GND VCCA = 1.1 V to 3.6 V ±5 μA
A port VI = VCCI or GND VCCA = 1.1 V to 3.6 V ±5
VOLTAGE LEVEL SHIFTER – CEC LINE (x_A AND x_B PORTS)
VOHA IOH = –20 μA VI = VIH VCCA = 1.1 V to 3.6 V VCCA × 0.80 V
VOLA IOL = 20 µA VI = VIL VCCA = 1.1 V to 3.6 V VCCA × 0.17 V
VOHB IOH = –20 μA VI = VIH V3P3 × 0.80 V
VOLB IOL = 3 mA VI = VIL 0.4 V
ΔVT Hysteresis at the Sxx_A (VT+ – VT–) VCCA = 1.1 V to 3.6 V 40 mV
ΔVT Hysteresis at the Sxx_B (VT+ – VT–) VCCA = 1.1 V to 3.6 V 300 mV
RPU (Internal pullup) CEC_A Pull-up connected to VCCA rail 10
CEC_B Pull-up connected to 3.3 V rail 22 26 30
Ioff A port VCCA = 0 V, VI or VO = 0 to 3.6 V VCCA = 0 V ±5 μA
B port 5VOUT = 0 V, VI or VO = 0 to 5.5 V VCCA = 0 V to 3.6 V ±1.8
IOZ B port VO = VCCO or GND VCCA = 1.1 V to 3.6 V ±5 μA
A port VI = VCCI or GND VCCA = 1.1 V to 3.6 V ±5
VOLTAGE LEVEL SHIFTER – HPD LINE (x_A AND x_B PORTS)
VOHA IOH = –3 mA VI = VIH VCCA = 1.1 V to 3.6 V VCCA × 0.07 V
VOLA IOL = 3 mA VI = VIL VCCA = 1.1 V to 3.6 V 0.4 V
ΔVT Hysteresis (VT+ – VT–) VCCA = 1.1 V to 3.6 V 400 mV
RPD (Internal pulldown resistor) HPD_B Pull-down connected to GND 11
Ioff A port VO = VCCO or GND VCCA = 0 V ±5 μA
IOZ A port VI = VCCO or GND VCCA = 3.6 V ±5 μA
LS_OE, CT_CP_HPD
II VI = VCCA or GND VCCA = 1.1 V to 3.6 V ±12 μA
I/O CAPACITANCES
CI Control inputs VI = 1.89 V or GND VCCA = 1.1 to 3.6 V; ƒ = 1 MHz 7.1 pF
CIO A port VO = 1.89 V or GND VCCA = 1.1 to 3.6 V; ƒ = 1 MHz 8.3 pF
B port VO = 5.0 V or GND V5VOUT = 5.0 V; ƒ = 1 MHz 15 pF
(1) The TPD12S016 turns off after the device temperature reaches the TRIP temperature.
(2) After the thermal shut-down circuit turns off the load switch, the switch turns on again after the device junction temperature cools down to a temperature equals to or less than TRIP-HYST.

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER PINS TEST CONDITIONS MIN TYP MAX UNIT
CL Bus load capacitance (B side) 750 pF
Bus load capacitance (A side) 15
VOLTAGE LEVEL SHIFTER – SCL, SDA LINES (x_A And x_B PORTS) VCCA = 1.2 V
tPHL Propagation delay A to B SCL/SDA channels enabled 310 ns
B to A 420
tPLH Propagation delay A to B 510 ns
B to A 427
tFALL A Port fall time A-Port 334 ns
B Port fall time B-Port 225
tRISE A Port rise time A-Port 315 ns
B Port rise time B-Port 415
F(MAX) Maximum switching frequency 400 kHz
VOLTAGE LEVEL SHIFTER – CEC LINES (x_A AND x_B PORTS) VCCA = 1.2 V
tPHL Propagation delay A to B
CEC channel enabled
385 ns
B to A 526
tPLH Propagation delay A to B 13.8 µs
B to A 16.6 ns
tFALL A Port fall time A-Port 334 ns
B Port fall time B-Port 170
tRISE A Port rise time A-Port 315 ns
B Port rise time B-Port 28 µs
VOLTAGE LEVEL SHIFTER – HPD LINES (x_A AND x_B PORTS) VCCA = 1.2 V
tPHL Propagation delay B to A HPD channel enabled 14.4 µs
tPLH Propagation delay B to A 9.2 µs
tFALL A Port fall time A-Port 2.1 ns
tRISE A Port rise time A-Port 2.1 ns
VOLTAGE LEVEL SHIFTER – SCL, SDA LINES (x_A AND x_B PORTS) VCCA = 1.5 V
tPHL Propagation delay A to B SCL/SDA channels enabled 310 ns
B to A 420 ns
tPLH Propagation delay A to B 410 ns
B to A 425 ns
tFALL A Port fall time A-Port 250 ns
B Port fall time B-Port 225 ns
tRISE A Port rise time A-Port 315 ns
B Port fall time B-Port 415 ns
F(MAX) Maximum switching frequency 400 kHz
VOLTAGE LEVEL SHIFTER – CEC LINES (x_A AND x_B PORTS) VCCA = 1.5 V
tPHL Propagation delay A to B CEC channel enabled 380 ns
B to A 420
tPLH Propagation delay A to B 13.8 µs
B to A 16.6 ns
tFALL A Port fall time A-Port 250 ns
B Port fall time B-Port 170
tRISE A Port rise time A-Port 315 ns
B Port rise time B-Port 28 µs
VOLTAGE LEVEL SHIFTER – HPD LINES (x_A AND x_B PORTS) VCCA = 1.5 V
tPHL Propagation delay B to A HPD channel enabled 14.4 µs
tPLH Propagation delay B to A 9.2 µs
tFALL A Port fall time A-Port 1.8 ns
tRISE A Port rise time A-Port 1.8 ns
VOLTAGE LEVEL SHIFTER – SCL, SDA LINES (x_A AND x_B PORTS) VCCA = 1.8 V
tPHL Propagation delay A to B SCL/SDA channels enabled 300 ns
B to A 350 ns
tPLH Propagation delay A to B 400 ns
B to A 420 ns
tFALL A Port fall time A-Port 210 ns
B Port fall time B-Port 225 ns
tRISE A Port rise time A-Port 315 ns
B Port fall time B-Port 415 ns
F(MAX) Maximum switching frequency 400 kHz
VOLTAGE LEVEL SHIFTER – CEC LINES (x_A AND x_B PORTS) VCCA = 1.8 V
tPHL Propagation delay A to B CEC channel enabled 375 ns
B to A 366
tPLH Propagation delay A to B 13.8 µs
B to A 16.6 ns
tFALL A Port fall time A-Port 210 ns
B Port fall time B-Port 170
tRISE A Port rise time A-Port 315 ns
B Port rise time B-Port 28 µs
VOLTAGE LEVEL SHIFTER – HPD LINES (x_A AND x_B PORTS) VCCA = 1.8 V
tPHL Propagation delay B to A HPD channels enabled 14.2 µs
tPLH Propagation delay B to A 9.2 µs
tFALL A Port fall time A-Port 1.5 ns
tRISE A Port rise time A-Port 1.5 ns
VOLTAGE LEVEL SHIFTER – SCL, SDA LINES (x_A And x_B PORTS) VCCA = 2.5 V
tPHL Propagation delay A to B SCL/SDA channels enabled 300 ns
B to A 400
tPLH Propagation delay A to B 290 ns
B to A 420
tFALL A Port fall time A-Port 170 kHz
B Port fall time B-Port 225
tRISE A Port rise time A-Port 315 ns
B Port fall time B-Port 415
F(MAX) Maximum switching frequency 400 kHz
VOLTAGE LEVEL SHIFTER – CEC LINES (x_A AND x_B PORTS) VCCA = 2.5 V
tPHL Propagation delay A to B CEC channel enabled 375 ns
B to A 305
tPLH Propagation delay A to B 13.8 µs
B to A 16.6 ns
tFALL A Port fall time A-Port 170 ns
B Port fall time B-Port 170
tRISE A Port rise time A-Port 315 ns
B Port rise time B-Port 28 µs
VOLTAGE LEVEL SHIFTER – HPD LINES (x_A AND x_B PORTS) VCCA = 2.5 V
tPHL Propagation delay B to A HPD channel enabled 14.2 µs
tPLH Propagation delay B to A 9.2 µs
tFALL A Port fall time A-Port 1.2 ns
tRISE A Port rise time A-Port 1.2 ns
VOLTAGE LEVEL SHIFTER – SCL, SDA LINES (x_A And x_B PORTS) VCCA = 3.3 V
tPHL Propagation delay A to B SCL/SDA channels enabled 300 ns
B to A 400
tPLH Propagation delay A to B 260 ns
B to A 415
tFALL A Port fall time A-Port 160 ns
B Port fall time B-Port 225
tRISE A Port rise time A-Port 305 ns
B Port fall time B-Port 415
F(MAX) Maximum switching frequency 400 kHz
VOLTAGE LEVEL SHIFTER – CEC LINES (x_A AND x_B PORTS) VCCA = 3.3V
tPHL Propagation delay A to B CEC channel enabled 375 ns
B to A 305
tPLH Propagation delay A to B 13.8 µs
B to A 16.6 ns
tFALL A Port fall time A-Port 160 ns
B Port fall time B-Port 170
tRISE A Port rise time A-Port 305 ns
B Port rise time B-Port 28 µs
VOLTAGE LEVEL SHIFTER – HPD LINES (x_A AND x_B PORTS) VCCA = 3.3 V
tPHL Propagation delay B to A HPD channel enabled 14.2 µs
tPLH Propagation delay B to A 9.2 µs
tFALL A Port fall time A-Port 1.1 ns
tRISE A Port rise time A-Port 1.1 ns

6.7 Typical Characteristics

TPD12S016 D001_SLLSE96.gif
Figure 1. IEC Clamping Waveform +8kv Contact
TPD12S016 D003_SLLSE96.gif
Figure 3. CT_HPD VIH
TPD12S016 D005_SLLSE96.gif
Figure 5. Channel-to-Channel Crosstalk
TPD12S016 D007_SLLSE96.gif
Figure 7. Load Switch Ileakage vs Temperature
TPD12S016 D009_SLLSE96.gif
Figure 9. Short-Circuit Response Time (Powered-Up to Short)
TPD12S016 D011_SLLSE96.gif
Figure 11. Capacitance vs Bias Voltage
TPD12S016 D002_SLLSE96.gif
Figure 2. IEC Clamping Waveform –8kv Contact
TPD12S016 D004_SLLSE96.gif
Figure 4. Insertion Loss, Data Line to GND
TPD12S016 D006_SLLSE96.gif
Figure 6. Switch Resistance vs Temperature,
Iswitch at Approximately 55 mA
TPD12S016 D008_SLLSE96.gif
Figure 8. TMDS Line IIO vs Temperature
TPD12S016 D010_SLLSE96.gif
Figure 10. Current Limit Response Time (Switch Enabled to Short)
TPD12S016 D012_SLLSE96.gif
Figure 12. Load Switch ILEAKAGE_REVERSE vs V5V_OUT