SLVSDL1 April   2017 TPD2S300

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings—JEDEC Specification
    3. 6.3 ESD Ratings—IEC Specification
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Electrical Characteristics
    7. 6.7 Timing Requirements
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 2-Channels of Short-to-VBUS Overvoltage Protection (CC1, CC2 Pins): 24-VDC Tolerant
      2. 7.3.2 2-Channels of IEC61000-4-2 ESD Protection (CC1, CC2 Pins)
      3. 7.3.3 Low Quiescent Current: 3.23 µA (Typical), VPWR, VM = 3.3 V
      4. 7.3.4 CC1, CC2 Overvoltage Protection FETs 200 mA Capable for Passing VCONN Power
      5. 7.3.5 CC Dead Battery Resistors Integrated for Handling Dead Battery Use Case in Mobile Devices
      6. 7.3.6 1.4-mm × 1.4-mm WCSP Package
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Smart-Phone Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 VBIAS Capacitor Selection
          2. 8.2.1.2.2 Dead Battery Operation
          3. 8.2.1.2.3 CC Line Capacitance
          4. 8.2.1.2.4 FLT Pin Operation
          5. 8.2.1.2.5 VCONN Operation
          6. 8.2.1.2.6 Low Quiescent Current
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Laptop Application
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 VBIAS Capacitor Selection
          2. 8.2.2.2.2 Dead Battery Operation
          3. 8.2.2.2.3 CC Line Capacitance
          4. 8.2.2.2.4 FLT Pin Operation
          5. 8.2.2.2.5 VCONN Operation
        3. 8.2.2.3 Application Curves
      3. 8.2.3 Power Adaptor Application
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
          1. 8.2.3.2.1 VBIAS Capacitor Selection
          2. 8.2.3.2.2 Dead Battery Operation
          3. 8.2.3.2.3 CC Line Capacitance
          4. 8.2.3.2.4 FLT Pin Operation
          5. 8.2.3.2.5 VCONN Operation
        3. 8.2.3.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

The VPWR pin provides power to all the circuitry in the TPD2S300. It is recommended a 1-µF decoupling capacitor is placed as close as possible to the VPWR pin. If USB PD is desired to be operated in dead battery conditions, it is critical that the TPD2S300 share the same power supply as the PD controller in dead battery boot-up (such as sharing the same dead battery LDO). See the CC Dead Battery Resistors Integrated for Handling Dead Battery Use Case in Mobile Devices section for more details.

The VM pin is used to control the resistance of the CC OVP FETs. If only CC analog and PD communications are needed over the CC lines, short this pin to VPWR, and no extra capacitor is needed. However, if wanting to use VCONN on CC, and the lower resistance operation of the TPD2S300 is needed, then VM needs to be connected to its own independent voltage source that is ≥ 9 V and ≤ 22 V. This is usually the 3S or 4S battery in the system. If connected to its own independent voltage source, then VM with need its own 1-µF decoupling capacitor; it is recommended to place this capacitor as close as possible to the VM pin.