SLLSEY0A April   2017  – July 2017 TPD2S701-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings—AEC Specification
    3. 6.3  ESD Ratings—IEC Specification
    4. 6.4  ESD Ratings—ISO Specification
    5. 6.5  Recommended Operating Conditions
    6. 6.6  Thermal Information
    7. 6.7  Electrical Characteristics
    8. 6.8  Power Supply and Supply Current Consumption Chracteristics
    9. 6.9  Timing Requirements
    10. 6.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 OVP Operation
      2. 8.3.2 OVP Threshold
      3. 8.3.3 D± Clamping Voltage
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Device Operation
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 VREF Operation
          1. 9.2.2.1.1 Mode 0
          2. 9.2.2.1.2 Mode 1
        2. 9.2.2.2 Mode 1 Enable Timing
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 VPWR Path
    2. 10.2 VREF Pin
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1) (2)
MIN MAX UNIT
VPWR 5-V DC supply voltage for internal circuitry –0.3 7.7
V
VREF Pin to set OVP threshold –0.3 6 V
VD+, VD– Voltage range from connector-side USB data lines –0.3 7.7 V
D+, D– Voltage range for internal USB data lines –0.3 VREF + 0.3 V
VMODE Voltage on MODE pin –0.3 7.7 V
VFLT Voltage on FLT pin –0.3 7.7 V
VEN Voltage on enable pin –0.3 7.7 V
TA Operating free air temperature(3) –40 125 °C
TSTG Storage temperature –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
Thermal limits and power dissipation limits must be observed.

ESD Ratings—AEC Specification

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) All pins ±2000 V
Charged-device model (CDM), per AEC Q100-011 All pins besides corners ±500
Corner pins ±750
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

ESD Ratings—IEC Specification

VALUE UNIT
V(ESD) Electrostatic discharge IEC 61000-4-2 contact discharge VD+, VD– pins(1) ±8000 V
IEC 61000-4-2 air-gap discharge VD+, VD– pins(1) ±15000
See Figure 19 for details on system level ESD testing setup.

ESD Ratings—ISO Specification

VALUE UNIT
VESD (1) Electrostatic discharge ISO 10605 (330 pF, 330 Ω) contact discharge (10 strikes) VD+, VD– pins ±8000 V
ISO 10605 (330 pF, 330 Ω) air-gap discharge (10 strikes) VD+, VD– pins ±15000
ISO 10605 (150 pF, 330 Ω) contact discharge (10 strikes) VD+, VD– pins ±8000
ISO 10605 (150 pF, 330 Ω) air-gap discharge (10 strikes) VD+, VD– pins ±15000
ISO 10605 (330 pF, 2 kΩ) contact discharge (10 stikes)(2) VD+, VD– pins ±8000
ISO 10605 (330 pF, 2 kΩ) air-gap discharge (10 strikes) VD+, VD– pins ±15000
ISO 10605 (150 pF, 2 kΩ) air-gap discharge (10 discharges) VD+, VD– pins ±25000
See Figure 19 for details on system level ESD testing setup.
VREF > 3 V.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN TYP MAX UNIT
VPWR 5-V DC supply voltage for internal circuitry 4.5 7 V
VREF Mode 0. Voltage range for VREF pin (for setting OVP threshold) 3 3.6 V
VREF Mode 1. Voltage range for VREF pin (for setting OVP threshold) 0.63 3.8 V
VD+, VD– Voltage range from connector-side USB data lines 0 3.6 V
D+, D– Voltage range for internal USB data lines 0 3.6 V
VEN Voltage range for enable 0 7 V
VFLT Voltage range for FLT 0 7 V
IFLT Current into open drain FLT pin FET 0 3 mA
CVPWR VPWR capacitance(1) External Capacitor on VPWR pin 1 10 µF
CVREF VREF capacitance External Capacitor on VREF pin 0.3 1 3 µF
CMODE Allowed parasitic capacitance on mode pin from PCB and mode 1 external resistors 20 pF
RMODE_0 Resistance to GND to set to mode 0 2 2.6
RMODE_1 Resistance to GND to set to mode 1 (calculate parallel combination of RTOP and RBOT) 14 20
For recommended values for capacitors and resistors, the typical values assume a component placed on the board near the pin. Minimum and maximum values listed are inclusive of manufacturing tolerances, voltage derating, board capacitance, and temperature variation. The effective value presented should be within the minimum and maximums listed in the table.

Thermal Information

THERMAL METRIC(1) TPD2S701-Q1 UNIT
DGS (VSSOP) DSK (WSON)
10 PINS 10 PINS
θJA Junction-to-ambient thermal resistance 167.3 61.5 °C/W
θJCtop Junction-to-case (top) thermal resistance 56.9 51.3 °C/W
θJB Junction-to-board thermal resistance 87.6 34 °C/W
ψJT Junction-to-top characterization parameter 7.7 1.3 °C/W
ψJB Junction-to-board characterization parameter 86.2 34.3 °C/W
θJCbot Junction-to-case (bottom) thermal resistance N/A 7.7 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
MODE 1 ADJUSTABLE VREF
VMODE_CMP Mode 1 VREF feedback regulator voltage VMODE Standard mode 1 set-up. EN = 0 V. Once VREF = 3.3 V, measure voltage on mode pin 0.47 0.5 0.53 V
IMODE_LEAK Mode pin mode 1 leakage current IMODE Standard mode 1. Remove RTOP and RBOT. Power up device and wait until start-up time has passed. Then force 0.53 V on the MODE pin and measure current into pin 50 200 nA
VREF_ACCURACY VREF accuracy VREF Informative, test parameters below; accuracy with RTOP and RBOT as ±1% resistors –8% 8%
VREF_3.3V Mode 1 VREF set to 3.3 V VREF Standard mode 1 set-up. RTOP = 140 kΩ ± 1%, RBOT = 24.9 kΩ ± 1%. EN = 0. Measure value of VREF once it settles 3.04 3.31 3.58 V
VREF_0.66V Mode 1 VREF set to 0.66 V VREF Standard mode 1 set-up. RTOP = 47.5 kΩ ± 1%, RBOT = 150 kΩ ± 1%.EN = 0. Measure value of VREF once it settles 0.6 0.66 0.72 V
VREF_3.8V Mode 1 VREF set to 3.8 V VREF Standard mode 1 set-up. RTOP = 165 kΩ ± 1%, RBOT = 24.9 kΩ ± 1%. EN = 0. Measure value of VREF once it settles 3.5 3.81 4.12 V
EN, FLT PINS
VIH High-level input voltage EN Mode 0. Connect VPWR = 5 V; VREF = 3.3 V; VD+ = 3.3 V; Set VIH(EN) = 0 V; Sweep VIH from 0 V to 1.4 V; Measure when D+ drops low (less than or equal to 5% of 3.3 V) from 3.3 V 1.2 V
Low-level input voltage Mode 0. Connect VPWR = 5 V; VREF = 3.3 V; VD+ = 3.3 V. Set VIH(EN) = 3.3 V; Sweep VIH from 3.3 V to 0.5 V; Measure when D+ rise to 95% of 3.3 V from 0 V 0.8
IIL Input leakage current EN Mode 0. VPWR = 5 V; VREF = 3.3 V; VI (EN) = 3.3 V ; Measure current into EN pin 1 µA
VOL Low-level output voltage FLT Mode 0. Drive the TPS2S701-Q1 in OVP to assert FLT pin. Source IOL = 1 mA into FLT pin and measure voltage on FLT pin when asserted 0.4 V
TSD_RISING The rising over temperature protection shutdown threshold VPWR = 5 V, ENZ = 0 V, TA stepped up until FLTZ is asserted 140 150 165
TSD_FALLING The falling over temperature protection shutdown threshold VPWR = 5 V, ENZ = 0 V, TA stepped down from TSD_RISING until FLTZ is cleared 125 138 150
TSD_HYST The over temperature protection shutdown threshold hysteresis TSD_RISING – TSD_FALLING 10 12 15
OVP CIRCUIT—VD±
VOVP_RISING Input overvoltage protection threshold, VREF > 3.6 V VD± Mode 1. Set VPWR = 5 V; EN = 0 V; RTOP = 165 kΩ, RBOT = 24.9 kΩ. Connect D± to 40-Ω load.  Increase VD+ or VD– from 4.1 V to 4.9 V. Measure the value at which FLTZ is asserted 4.3 4.5 4.7 V
VOVP_RISING Input overvoltage protection threshold VD± Mode 1. Set VPWR = 5 V; EN = 0 V; RTOP = 140 kΩ, RBOT = 24.9 kΩ. Increase VD+ or VD– from 3.6 V to 4.6 V. Measure the value at which FLTZ is asserted. Repeat for RTOP = 39 kΩ, RBOT = 150 kΩ. Increase VD+ or VD– from 0.6 V to 0.9 V. Measure the value at which FLTZ is asserted. See the resultant values meet the equation, and make sure to observe data switches turnoff.

Also check for mode 0 when VREF = 3.3 V
1.19 × VREF 1.25 × VREF 1.31 × VREF V
VHYS_OVP Hysteresis on OVP VD± Difference between rising and falling OVP thresholds on VD± 25 mV
VOVP_FALLING Input overvoltage protection threshold VD± After collecting each rising OVP threshold, lower the VD± voltage until you see FLT deassert. This gives the falling OVP threshold. Use this value to calculate VHYS_OVP VOVP_RISING – VHYS_OVP V
IVD_LEAK_0 V Leakage current on VD± during normal operation VD± Standard mode 0 or mode 1. Set VD± = 0 V. D± = floating. Measure current flowing into VD± –0.1 0.1 µA
IVD_LEAK_3.6V Leakage current on VD± during normal operation VD± Standard mode 0 or mode 1. Set VD± = 3.6 V. D± = floating. Measure current flowing into VD± 2.5 4 µA
VOVP_3.3V Input overvoltage threshold for VREF = 3.3 V VD± Standard mode 1. RTOP = 140 kΩ ± 1%, RBOT = 24.9 kΩ ± 1%. Connect D± to 40-Ω load.  Measure the value at which FLTZ is asserted 3.61 4.14 4.67 V
VOVP_0.66V Input overvoltage threshold for VREF = 0.66 V VD± Standard mode 1. RTOP = 47.5 kΩ ± 1%, RBOT = 150 kΩ ± 1%. Connect D± to 40-Ω load. Measure the value at which FLTZ is asserted 0.72 0.83 0.94 V
DATA LINE SWITCHES – VD+ to D+ or VD– to D–
RON On resistance Mode 0 or 1. Set VPWR = 5 V; VREF = 3.3 V; EN = 0 V; Measure resistance between D+ and VD+ or D– and VD–, voltage between 0 and 0.4 V 4 6.5 Ω
RON(Flat) On resistance flatness Mode 0 or 1. Set VPWR = 5 V; VREF = 3.3 V; EN = 0 V; Measure resistance between D+ and VD+ or D– and VD–, sweep voltage between 0 and 0.4 V. Take difference of resistance at 0.4-V and 0-V VD± bias 1 Ω
BWON On bandwidth (–3-dB) Mode 0 or 1. Set VPWR = 5 V; VREF = 3.3 V; EN = 0 V; Measure S21 bandwidth from D+ to VD+ or D– to VD– with voltage swing = 400 mVpp, Vcm = 0.2 V 960 MHz

Power Supply and Supply Current Consumption Chracteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VUVLO_RISING_VPWR VPWR rising UVLO threshold Use standard mode 0 set-up. Set EN = 0 V, load D+ to 45 Ω, VD+ = 3.3 V. Set VPWR = 3.5 V, and step up VPWR until 90% of VD+ appears on D+ 3.7 3.95 4.2 V
VUVLO_HYST_VPWR VPWR UVLO hysteresis Use standard mode 0 set up. Set EN = 0 V, load D+ to 45 Ω, VD+ = 3.3 V. Set VPWR = 4.3 V, and step down VPWR until D+ falls to 10% of VD+. This gives VUVLO_FALLING_VPWR. VUVLO_RISING_VPWR – VUVLO_FALLING_VPWR = VUVLO_HYST_VPWR for this unit 250 300 400 mV
VUVLO_RISING_VREF VREF rising UVLO threshold in mode 0 Use standard mode 0 set up. Set EN = 0V, load D+ to 45 Ω, VD+ = 3.3 V. Set VREF = 2.5 V, and step up VREF until 90% of VD+ appears on D+ 2.6 2.7 2.9 V
VUVLO_HYST_VREF VREF UVLO hysteresis Use standard mode 0 set up. Set EN = 0 V, load D+ to 45 Ω, VD+ = 3.3 V. Set VREF = 3 V, and step down VREF until D+ falls to 10% of VD+. This gives VUVLO_FALLING_VREF. VUVLO_RISING_VREF –VUVLO_FALLING_VREF = VUVLO_HYST_VREF for this unit 75 125 200 mV
IVPWR_DISABLED_MODE0 VPWR disabled current consumption Use standard mode 0. EN = 5 V . Measure current into VPWR 110 µA
IVPWR_DISABLED_MODE1 VPWR disabled current consumption Use standard mode 1. EN = 5 V. Measure current into VPWR 110 µA
IVREF_DISABLED VREF disabled current consumption mode 0 Use standard mode 0. EN = 5 V. Measure current into VREF 10 µA
IVPWR_MODE0 VPWR pperating current consumption Use standard mode 0. EN = 0 V. Measure current into VPWR 250 µA
IVPWR_MODE1 VPWR operating current consumption Use standard mode 1. EN = 0 V. Measure current into VPWR 350 µA
IVREF VREF operating current consumption mode 0 Use standard mode 0. EN = 0 V. Measure current into VREF 12 20 µA
ICHG_VREF VREF fast charge current Standard mode 1. 0.1 µF < CVREF < 3 µF. Set-up for charging to 3.3 V. Use a high voltage capacitor that does not derate capacitance up the 3.3 V. Measure slope to calculate the current when CVREF cap is being charged. Test to check this OPEN LOOP method 22 mA
ID_OFF_LEAK_STB Mode 0. Measured flowing into D+ or D– supply, VPWR = 0 V, VD+ or VD– = 18 V, EN = 0 V, VREF = 0 V, D± = 0 V –1 1 µA
ID_ON_LEAK_STB Mode 0. Measured flowing into D+ or D– supply, VPWR = 5 V, VD+ or VD– = 18 V, EN = 0 V, VREF = 3.3 V, D± = 0 V –1 1 µA
IVD_OFF_LEAK_STB Mode 0. Measured flowing out of VD+ or VD– supply, VPWR = 0 V, VD+ or VD– = 18 V, EN = 0 V, VREF = 0 V, D± = 0 V 120
IVD_ON_LEAK_STB Mode 0. Measured flowing out of VD+ or VD– supply, VPWR = 5 V, VD+ or VD– = 18 V, EN = 0 V, VREF = 3.3 V, D± = 0 V 120 µA
IVPWR_TO_VREF_LEAK Leakage from VPWR to VREF Use standard mode 0.  Set VREF = 0 V.  Measured current flowing out of VREF pin 1 µA
IVREF_TO_VPWR_LEAK Leakage from VREF to VPWR Use standard mode 0.  Set VPWR = 0 V.  Measured as current flowing out of VPWR pin 1 µA

Timing Requirements

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
ENABLE PIN AND VREF FAST CHARGE
TVREF_CHG VREF fast charge time Time between when 5 V is applied to VPWR, and VREF reaches VVREF_FAST_CHG. Needs to happen before or at same time tON_STARTUP completes 0.5 1 ms
TON_STARTUP_MODE0 Device turnon time from UVLO mode 0 Mode 0. EN = 0 V, measured from VPWR and VREF = UVLO+ to data FET ON, VPWR comes to UVLO+ second. Place 3.3 V on VD±. Ramp VREF to 3.3 V, then VPWR to 5 V and measure the time it takes for D± to reach 90% of VD± 0.5 1 ms
TON_STARTUP_MODE1 Device turnon time from UVLO mode 1 Informative. mode 1. EN = 0 V, measured from VPWR = UVLO+ to data FET ON 0.5 + TCHG_CVREF ms
TON_STARTUP_MODE1_3.3V Device turnon time from UVLO mode 1 Mode 1. EN = 0 V, measured from VPWR = UVLO+ to data FET ON, CVREF = 1 µF, VREF_FINAL = 3.3 V. Measure the time it takes for D± to reach 90% of VD± 0.6 1 ms
TON_EN_MODE0 Device turnon time mode 0 Mode 0. VPWR = 5 V, VREF = 3.3 V, time from EN is asserted until data FET is ON. Place 3.3 V on VD±, measure the time it takes for D± to reach 90% of VD± 150 µs
TON_EN_MODE1 Device turnon time mode 1 Mode 1. VPWR = 5 V, VREF_INITIAL = 0 V, time from EN is asserted until data FET is ON. Place 3.3 V on VD±, measure the time it takes for D± to reach 90% of VD± 150 + TCHG_VREF µs
TON_EN_MODE1_3.3V Device turnon time mode 1 for VREF = 3.3 V Mode 1. VPWR = 5 V, VREF_INITIAL = 0 V, time from EN is asserted until data FET is ON. Place 3.3 V on VD±, measure the time it takes for D± to reach 90% of VD±. CVREF = 1 µF, VREF_FINAL = 3.3 V 300 µs
TOFF_EN Device turnoff time Mode 0 or 1. VPWR = 5 V, VREF = 3.3 V, time from EN is deasserted until data FET is off. Place 3.3 V on VD±, measure the time it takes for D± to fall to 10% of VD±, R = 45 Ω 5 µs
TCHG_CVREF Time to charge CVREF Informative. Mode 1. Time from VREF = 0 V to 80% × VREF_FINAL after EN transitions from high to low (CVREF × 0.8 (VREF_FINAL)/(ICHG_VREF) s
TCHG_CVREF_3.3V Time to charge CVREF to 3.3 V Mode 1. Time from VREF = 0 V to 90% × 3.3 V after EN transitions from high to low, CVREF = 1 µF 132 µs
TCHG_CVREF_0.66V Time to charge CVREF to 0.66 V Mode 1. Time from VREF = 0 V to 90% × 0.63 V after EN transitions from high to low, CVREF = 1 µF. RTOP = 47.5 kΩ ± 1%, RBOT = 150 kΩ ± 1% 26 µs
OVERVOLTAGE PROTECTION
tOVP_response_VBUS OVP response time to VBUS Mode 0 or 1. Measured from OVP condition to FET turn off . Short VD± to 5 V and measure the time it takes D± voltage to reach 0.1 × VD±_CLAMP_MAX from the time the 5-V hot-plug is applied. RLOAD_D± = 45 Ω.(1) (2) 2 µs
tOVP_response OVP response time Mode 0 or 1. Measured from OVP condition to FET turn off . Short VD± to 18 V and measure the time it takes D± voltage to reach 0.1 × VD±_CLAMP_MAX from the time the 18-V hot-plug is applied. RLOAD_D± = 45 Ω(1) (2) 0.1 1 µs
tOVP_Recov _FLT Recovery time FLT pin Measured from OVP clear to FLT deassertion(1) 32 ms
tOVP_Recov _FET Recovery time for data FET to turn back on Measured from OVP clear until FET turns back on. Drop VD+ from 16 V to 3.3 V with VREF = 3.3 V, measure time it takes for D+ to reach 90% of 3.3 V 32 ms
tOVP_ASSERT FLT assertion time Measured from OVP on VD+ or VD– to FLT assertion 12.6 18 23.4 ms
Shown in Figure 1.
Specified by design, not production tested.
TPD2S701-Q1 OVP_Operation.gif
OVP Operation – VD+, VD–
Figure 1. TPD2S701-Q1 Timing Diagram

Typical Characteristics

TPD2S701-Q1 Fig1_SLLSEU8.gif
Figure 2. 8-kV IEC 61400-4-2 Contact Waveform
TPD2S701-Q1 Fig3_SLLSEU8.gif
Figure 4. 8-kV ISO 10605 (330-pF, 330-Ω) Contact Waveform
TPD2S701-Q1 Fig5_SLLSEU8.gif
Figure 6. Data Line I-V Curve
TPD2S701-Q1 Fig7_SLLSEU8.gif
Figure 8. VPWR Operating Current vs Bias Voltage
TPD2S701-Q1 D010_SLLSEU8.gif
Figure 10. VD± Leakage Current at 7 V Across Temperature (Enabled)
TPD2S701-Q1 D011_SLLSEU8.gif
Figure 12. Data Switch Short-to-5 V Response Waveform
TPD2S701-Q1 Fig14_SLLSEU8.gif
Figure 14. FLT Recover Time After OVP Clear
TPD2S701-Q1 D016_SLLSEU8.gif
Figure 16. Data Switch Single-Ended Bandwidth
TPD2S701-Q1 D019_SLLSEU8.gif
Figure 18. USB2.0 Eye Diagram (With TPD2S701-Q1)
TPD2S701-Q1 Fig2_SLLSEU8.gif
Figure 3. –8-kV IEC 61400-4-2 Contact Waveform
TPD2S701-Q1 Fig4_SLLSEU8.gif
Figure 5. –8-kV ISO 10605 (330-pF, 330-Ω) Contact Waveform
TPD2S701-Q1 Fig6_SLLSEU8.gif
Figure 7. Data Switch Turnon Time
TPD2S701-Q1 Fig8_SLLSEU8.gif
Figure 9. VPWR Operating Current vs Temperature
(VPWR = 5 V)
TPD2S701-Q1 Fig10_SLLSEU8.gif
Figure 11. Data Switch RON vs Bias Voltage
TPD2S701-Q1 Fig13_SLLSEU8.gif
Figure 13. FLT Assertion Time During OVP
TPD2S701-Q1 D015_SLLSEU8.gif
Figure 15. Data Switch Differential Bandwidth
TPD2S701-Q1 D018_SLLSEU8.gif
Figure 17. USB2.0 Eye Diagram (No TPD2S701-Q1)