SLVSCO7C August   2014  – September 2017 TPD1E05U06-Q1 , TPD4E05U06-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings—AEC Specification
    3. 6.3 ESD Ratings—IEC Specification
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Electrical Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 AEC-Q101 Qualification
      2. 7.3.2 IEC 61000-4-2 Level 4 ESD Protection
      3. 7.3.3 IEC 61000-4-4 EFT Protection
      4. 7.3.4 IEC 61000-4-5 Surge Protection
      5. 7.3.5 I/O Capacitance
      6. 7.3.6 DC Breakdown Voltage
      7. 7.3.7 Ultra-Low Leakage Current
      8. 7.3.8 Low ESD Clamping Voltage
      9. 7.3.9 Easy Flow-Through Routing
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Signal Range on Pin 1, 2, 4, or 5
        2. 8.2.2.2 Operating Frequency
      3. 8.2.3 Application Curve
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Related Links
    4. 10.4 Community Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout

Layout Guidelines

  • The optimum placement is as close to the connector as possible.
    • EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.
    • The PCB designer needs to minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector.
  • Route the protected traces as straight as possible.
  • Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded corners with the largest radii possible.
    • Electric fields tend to build up on corners, increasing EMI coupling.

Layout Example

This application is typical of an HDMI 1.4 layout.

TPD4E05U06-Q1 TPD1E05U06-Q1 layout_SLVSCO7.gif Figure 13. TPD4E05U06-Q1 Layout