SLIS113E October   2004  – May 2022 TPIC1021

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 LIN Bus Pin
        1. 8.3.1.1 Transmitter Characteristics
        2. 8.3.1.2 Receiver Characteristics
      2. 8.3.2 Transmit Input Pin (TXD)
        1. 8.3.2.1 TXD Dominant State Timeout
      3. 8.3.3 Receive Output Pin (RXD)
        1. 8.3.3.1 RXD Wake-up Request
      4. 8.3.4 Ground (GND)
      5. 8.3.5 Enable Input Pin (EN)
      6. 8.3.6 NWake Input Pin (NWake)
      7. 8.3.7 Inhibit Output Pin (INH)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operating States
        1. 8.4.1.1 Normal Mode
        2. 8.4.1.2 Low Power Mode
        3. 8.4.1.3 Wake-Up Events
        4. 8.4.1.4 Standby Mode
      2. 8.4.2 Supply Voltage (VSUP)
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description (continued)

The LIN Protocol output data stream on the TXD pin is converted by the TPIC1021 into the LIN bus signal through a current limited, wave-shaping low-side driver with control as outlined by the LIN Physical Layer Specification Revision 2.1. The receiver converts the data stream from the LIN bus and outputs the data stream via the RXD pin.

In Low Power mode, the TPIC1021 requires very low quiescent current even though the wake-up circuits remain active allowing for remote wake up via the LIN bus or local wake ups via NWake or EN pins.

The TPIC1021 has been designed for operation in the harsh automotive environment. The device can handle LIN bus voltage swing from 40 V down to ground and survive –40 V. The device also prevents back feed current through the LIN pin to the supply input in case of a ground shift or supply voltage disconnection. It also features under-voltage, over temperature, and loss of ground protection. In the event of a fault condition the output is immediately switched off and remains off until the fault condition is removed.