SLUSEQ9D July   2022  – April 2024 TPS1211-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Charge Pump and Gate Driver Output (VS, PU, PD, BST, SRC)
      2. 8.3.2 Capacitive Load Driving
        1. 8.3.2.1 FET Gate Slew Rate Control
        2. 8.3.2.2 Using Precharge FET - (with TPS12111-Q1 Only)
      3. 8.3.3 Overcurrent and Short-Circuit Protection
        1. 8.3.3.1 Overcurrent Protection with Auto-Retry
        2. 8.3.3.2 Overcurrent Protection with Latch-Off
        3. 8.3.3.3 Short-Circuit Protection
      4. 8.3.4 Analog Current Monitor Output (IMON)
      5. 8.3.5 Overvoltage (OV) and Undervoltage Protection (UVLO)
      6. 8.3.6 Remote Temperature Sensing and Protection (DIODE)
      7. 8.3.7 Output Reverse Polarity Protection
      8. 8.3.8 TPS1211x-Q1 as a Simple Gate Driver
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application: Driving Zonal Controller Loads on 12-V Line in Power Distribution Unit
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Typical Application: Reverse Polarity Protection with TPS12110-Q1
      1. 9.3.1 Design Requirements
      2. 9.3.2 External Component Selection
      3. 9.3.3 Application Curves
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overcurrent Protection with Latch-Off

Connect an approximately 100-kΩ resistor across CTMR as shown in the following figure. With this resistor, during the charging cycle, the voltage across CTMR gets clamped to a level below V(TMR_OC) resulting in a latch-off behavior.

Use Equation 9 to calculate CTMR capacitor to be connected between TMR and GND for RTMR = 100-kΩ.

Equation 9. C T M R = t O C R T M R   ×   l n 1 1 - 1.2 R T M R   ×   I T M R

Where, ITMR is internal pull-up current of 82-μA, tOC is desired overcurrent response time.

Toggle INP or EN/UVLO (below ENF) or power cycle VS below V(VS_PORF) to reset the latch. At low edge, the timer counter is reset and CTMR is discharged. PU pulls up to BST when INP is pulled high.

GUID-20221208-SS0I-TJ8G-HLWR-XJQPXZQXLLKB-low.svg Figure 8-11 Overcurrent Protection with Latch-Off