SLUSFA1 September   2024 TPS1214-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Charge Pump and Gate Driver Output (VS, GATE, BST, SRC)
      2. 8.3.2 Capacitive Load Driving
        1. 8.3.2.1 Using Low Power Bypass FET (G Drive) for Load Capacitor Charging
        2. 8.3.2.2 Using Main FET (GATE drive) Gate Slew Rate Control
      3. 8.3.3 Overcurrent and Short-Circuit Protection
        1. 8.3.3.1 I2t-Based Overcurrent Protection
          1. 8.3.3.1.1 I2t-Based Overcurrent Protection With Auto-Retry
          2. 8.3.3.1.2 I2t-Based Overcurrent Protection With Latch-Off
        2. 8.3.3.2 Short-Circuit Protection
      4. 8.3.4 Analog Current Monitor Output (IMON)
      5. 8.3.5 NTC based Temperature Sensing (TMP) and Analog Monitor Output (ITMPO)
      6. 8.3.6 Fault Indication and Diagnosis (FLT, SCP_TEST)
      7. 8.3.7 Reverse Polarity Protection
      8. 8.3.8 Undervoltage Protection (UVLO)
    4. 8.4 Device Functional Modes
      1. 8.4.1 State Diagram
      2. 8.4.2 State Transition Timing Diagram
      3. 8.4.3 Power Down
      4. 8.4.4 Shutdown Mode
      5. 8.4.5 Low Power Mode (LPM)
      6. 8.4.6 Active Mode (AM)
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application 1: Driving Power at all times (PAAT) Loads With Automatic Load Wakeup
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Typical Application 2: Driving Power at all times (PAAT) Loads With Automatic Load Wakeup and Output Bulk Capacitor Charging
      1. 9.3.1 Design Requirements
      2. 9.3.2 External Component Selection
      3. 9.3.3 Application Curves
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Tape and Reel Information
    2. 12.2 Mechanical Data

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Switching Characteristics

TJ = –40 ℃ to +125℃. V(VS) = 12 V, V(BST – SRC) = 12 V, V(SRC) = 0 V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tGATE(INP_H) INP Turn ON propogation Delay INP ↑ to GATE  ↑,  CL = 47 nF 1 µs
tGATE(INP_L) INP Turn OFF propogation Delay INP ↓ to GATE  ↓, CL = 47 nF 1 µs
tG_ON(LPM) Active mode to LPM mode transition delay  LPM ↓ to G  ↑,  CL(G) = 1 nF 7.5 µs
tGATE_OFF(LPM) Active mode to LPM mode transition delay  LPM ↓, G ↑ (above V(G_GOOD)) to GATE  ↓,  WAKE ↑ (low to High Z) ,  CL(GATE) = 47 nF 25 µs
tGATE(WAKE_LPM) LPM Mode to Active mode transition delay with LPM trigger LPM ↑ to GATE  ↑,  CL(GATE) = 47 nF 5 µs
tG(WAKE_LPM) LPM Mode to Active mode transition delay with LPM trigger LPM ↑ , GATE ↑ (above V(G_GOOD)) to G  ↓, WAKE  ↓ , CL(G) = 1 nF, V(LPM) = 0 V 10 µs
tGATE(WAKE_LWU) GATE turn ON propagation delay during Load wakeup V(CS2+–CS2-)↑ V(LWU) to GATE ↑, CL(GATE) = 47 nF, V(LPM) = 0 V 5 µs
tG(WAKE_LWU) G turn OFF propagation delay during Load wakeup V(CS2+–CS2-)↑ V(LWU) , GATE ↑ (above V(G_GOOD)) to G  ↓, WAKE  ↓ , CL(G) = 1 nF, V(LPM) = 0 V 10 µs
tGATE(EN_OFF) EN Turn OFF Propogation Delay  EN ↓ to GATE ↓, CL = 47 nF, LPM = High 4 µs
tGATE(UVLO_OFF) UVLO Turn OFF Propogation Delay  UVLO ↓ to GATE  ↓, CL = 47 nF, LPM = High 4 µs
tGATE(UVLO_ON) UVLO to GATE Turn ON Propogation Delay with CBT pre-biased > VPORF and INP kept high EN/UVLO ↑ to GATE ↑, CL = 47 nF, INP = 2 V, , LPM = High 4 µs
tGATE(VS_OFF) GATE Turn OFF Propogation Delay with VS falling < VPORF and INP, EN/UVLO kept high VS ↓ (cross VPORF) to GATE ↓, CL = 47 nF, INP = EN/UVLO = 2V, LPM = High 40 µs
tSC Short circuit protection propogation delay in active mode V(CS1+–CS1-) ↑ V(SCP) to GATE  ↓, CL = 47 nF, C(I2t) = 100 nF, V(LPM) = 2 V 5 µs
tLPM_SC Short circuit protection propogation delay in LPM (Powerup into LPM with short) V(CS2+–CS2-) ↑ V(LPM_SCP) to GATE ↑, CL = 47 nF, C(I2t) = 100 nF, V(LPM) = 0 V 5 µs
tGATE_ON(RPP) GATE turn ON delay during reverse polarity event when V(BST) < V(BST_UVLOF) V(VS) = 0 to –16 V to V(GATE – SRC) > 5 V,
CL = 47 nF, CBST = 100 nF
150 µs
tGATE_ON(RPP) GATE turn ON delay during reverse polarity event
when V(BST) > V(BST_UVLOF)
V(VS) = 24 to –45 V to V(GATE – SRC) > 5 V,,
CL = 47 nF, CBST = 1 µF
20 µs
tGATE(FLT_ASSERT) FLT assertion delay during short circuit V(CS1+–CS1–)↑ V(SCP) to FLT  ↓ 15 µs
tGATE(FLT_DE_ASSERT) FLT de-assertion delay during short circuit V(CS1+–CS1–)↓ V(SCP) to FLT  ↑ 4 µs
tGATE(FLT_ASSERT_BSTUVLO) FLT assertion delay during GATE Drive UVLO V(GATE–SRC)  ↓ V(BSTUVLOR) to FLT ↓ 25 µs
tGATE(FLT_DE_ASSERT_BSTUVLO) FLT de-assertion delay during GATE Drive UVLO V(GATE–SRC)  ↑ V(BSTUVLOR) to FLT ↑ 15 µs