SLVSHA1 September   2024 TPS1685

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Logic Interface
    7. 6.7 Timing Requirements
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Undervoltage Protection
      2. 7.3.2  Insertion Delay
      3. 7.3.3  Overvoltage Protection
      4. 7.3.4  Inrush Current, Overcurrent, and Short-Circuit Protection
        1. 7.3.4.1 Slew rate (dVdt) and Inrush Current Control
          1. 7.3.4.1.1 Start-Up Time Out
        2. 7.3.4.2 Steady-State Overcurrent Protection (Circuit-Breaker)
        3. 7.3.4.3 Active Current Limiting During Start-Up
        4. 7.3.4.4 Short-Circuit Protection
      5. 7.3.5  Analog Load Current Monitor (IMON)
      6. 7.3.6  Mode Selection (MODE)
      7. 7.3.7  Parallel Device Synchronization (SWEN)
      8. 7.3.8  Stacking Multiple eFuses for Unlimited Scalability
        1. 7.3.8.1 Current Balancing During Start-Up
      9. 7.3.9  Analog Junction Temperature Monitor (TEMP)
      10. 7.3.10 Overtemperature Protection
      11. 7.3.11 Fault Response and Indication (FLT)
      12. 7.3.12 Power Good Indication (PG)
      13. 7.3.13 Output Discharge
      14. 7.3.14 FET Health Monitoring
      15. 7.3.15 Single Point Failure Mitigation
        1. 7.3.15.1 IMON Pin Single Point Failure
        2. 7.3.15.2 IREF Pin Single Point Failure
        3. 7.3.15.3 ITIMER Pin Single Point Failure
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Single Device, Standalone Operation
      2. 8.1.2 Multiple Devices, Parallel Connection
    2. 8.2 Typical Application: 54V Power Path Protection in Data Center Servers
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Transient Protection
      2. 8.3.2 Output Short-Circuit Measurements
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information
    2. 11.2 Mechanical Data

Package Options

Mechanical Data (Package|Pins)
  • VMA|23
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Transient Protection

In the case of a short-circuit or circuit-breaker event when the device interrupts current flow, the input inductance generates a positive voltage spike on the input, and the output inductance generates a negative voltage spike on the output. The peak amplitude of voltage spikes (transients) is dependent on the value of inductance in series to the input or output of the device. Such transients can exceed the absolute maximum ratings of the device if steps are not taken to address the issue. Typical methods for addressing transients include:

  • Minimize lead length and inductance into and out of the device.

  • Use a large PCB GND plane.

  • Connect a Schottky diode from the OUT pin ground to absorb negative spikes.

  • Connect a low ESR capacitor of 10μF or higher at the OUT pin very close to the device.

  • Connect a ceramic capacitor CIN = 0.1 μF or higher at the IN pin very close to the device to dampen the rise time of input transients. The capacitor voltage rating must be at least twice the input supply voltage to be able to withstand the positive voltage excursion during inductive ringing.

The approximate value of input capacitance can be estimated with Equation 32.

Equation 32. VSPIKEAbsolute=VIN+ILOAD×LINCIN
where

VIN is the nominal supply voltage.

ILOAD is the load current.

LIN equals the effective inductance seen looking into the source.

CIN is the capacitance present at the input.

  • Some applications can require the addition of a Transient Voltage Suppressor (TVS) to prevent transients from exceeding the absolute maximum ratings of the device. In some cases, even if the maximum amplitude of the transients is below the absolute maximum rating of the device, a TVS can help to absorb the excessive energy dump and prevent it from creating very fast transient voltages on the input supply pin of the IC, which can couple to the internal control circuits and cause unexpected behavior.

The circuit implementation with optional protection components is shown in Figure 8-10.

TPS1685 Circuit Implementation with Optional Protection ComponentsFigure 8-10 Circuit Implementation with Optional Protection Components