SLVSHA1 September   2024 TPS1685

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Logic Interface
    7. 6.7 Timing Requirements
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Undervoltage Protection
      2. 7.3.2  Insertion Delay
      3. 7.3.3  Overvoltage Protection
      4. 7.3.4  Inrush Current, Overcurrent, and Short-Circuit Protection
        1. 7.3.4.1 Slew rate (dVdt) and Inrush Current Control
          1. 7.3.4.1.1 Start-Up Time Out
        2. 7.3.4.2 Steady-State Overcurrent Protection (Circuit-Breaker)
        3. 7.3.4.3 Active Current Limiting During Start-Up
        4. 7.3.4.4 Short-Circuit Protection
      5. 7.3.5  Analog Load Current Monitor (IMON)
      6. 7.3.6  Mode Selection (MODE)
      7. 7.3.7  Parallel Device Synchronization (SWEN)
      8. 7.3.8  Stacking Multiple eFuses for Unlimited Scalability
        1. 7.3.8.1 Current Balancing During Start-Up
      9. 7.3.9  Analog Junction Temperature Monitor (TEMP)
      10. 7.3.10 Overtemperature Protection
      11. 7.3.11 Fault Response and Indication (FLT)
      12. 7.3.12 Power Good Indication (PG)
      13. 7.3.13 Output Discharge
      14. 7.3.14 FET Health Monitoring
      15. 7.3.15 Single Point Failure Mitigation
        1. 7.3.15.1 IMON Pin Single Point Failure
        2. 7.3.15.2 IREF Pin Single Point Failure
        3. 7.3.15.3 ITIMER Pin Single Point Failure
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Single Device, Standalone Operation
      2. 8.1.2 Multiple Devices, Parallel Connection
    2. 8.2 Typical Application: 54V Power Path Protection in Data Center Servers
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Transient Protection
      2. 8.3.2 Output Short-Circuit Measurements
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information
    2. 11.2 Mechanical Data

Package Options

Mechanical Data (Package|Pins)
  • VMA|27
Thermal pad, mechanical data (Package|Pins)
Orderable Information

FET Health Monitoring

The TPS1685x can detect and report certain conditions which are indicative of a failure of the power path FET. If undetected or unreported, these conditions can compromise system performance by not providing power to the load correctly or by not providing the necessary level of protection. After a FET failure is detected, the TPS1685x tries to turn off the internal FET by pulling the gate low and asserts the FLT pin.

  • D-S short: D-S short can result in a constant uncontrolled power delivery path formed from source to load, either due to a board assembly defect or due to internal FET failure. This condition is detected at start-up by checking if VIN-OUT < VDSFLT before the FET is turned ON. If yes, the device engages the internal output discharge to try and discharge the output. If the VOUT does not discharge below VFB within a certain allowed interval, the device asserts the FLT pin.

  • G-D short: The TPS1685x detects this kind of FET failure at all times by checking if the gate voltage is close to VIN even when the internal control logic is trying to hold the FET in OFF condition.

  • G-S short: The TPS1685x detects this kind of FET failure during start-up by checking if the FET G-S voltage fails to reach the necessary overdrive voltage within a certain timeout period (tSU_TMR) after the gate driver is turned ON. While in steady-state, if the G-S voltage becomes low before the controller logic has signaled to the gate driver to turn off the FET, it is latched as a fault.