SLVSHA1 September   2024 TPS1685

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Logic Interface
    7. 6.7 Timing Requirements
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Undervoltage Protection
      2. 7.3.2  Insertion Delay
      3. 7.3.3  Overvoltage Protection
      4. 7.3.4  Inrush Current, Overcurrent, and Short-Circuit Protection
        1. 7.3.4.1 Slew rate (dVdt) and Inrush Current Control
          1. 7.3.4.1.1 Start-Up Time Out
        2. 7.3.4.2 Steady-State Overcurrent Protection (Circuit-Breaker)
        3. 7.3.4.3 Active Current Limiting During Start-Up
        4. 7.3.4.4 Short-Circuit Protection
      5. 7.3.5  Analog Load Current Monitor (IMON)
      6. 7.3.6  Mode Selection (MODE)
      7. 7.3.7  Parallel Device Synchronization (SWEN)
      8. 7.3.8  Stacking Multiple eFuses for Unlimited Scalability
        1. 7.3.8.1 Current Balancing During Start-Up
      9. 7.3.9  Analog Junction Temperature Monitor (TEMP)
      10. 7.3.10 Overtemperature Protection
      11. 7.3.11 Fault Response and Indication (FLT)
      12. 7.3.12 Power Good Indication (PG)
      13. 7.3.13 Output Discharge
      14. 7.3.14 FET Health Monitoring
      15. 7.3.15 Single Point Failure Mitigation
        1. 7.3.15.1 IMON Pin Single Point Failure
        2. 7.3.15.2 IREF Pin Single Point Failure
        3. 7.3.15.3 ITIMER Pin Single Point Failure
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Single Device, Standalone Operation
      2. 8.1.2 Multiple Devices, Parallel Connection
    2. 8.2 Typical Application: 54V Power Path Protection in Data Center Servers
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Transient Protection
      2. 8.3.2 Output Short-Circuit Measurements
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information
    2. 11.2 Mechanical Data

Package Options

Mechanical Data (Package|Pins)
  • VMA|27
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Good Indication (PG)

Power Good indication is an active high output which is asserted high to indicate when the device is in steady-state and capable of delivering maximum power.

Table 7-5 PG Indication Summary

Event or Condition

FET Status

PG Pin Status

PG Delay

Undervoltage ( VEN < VUVLO)

OFF

L

tPGD

VIN < VUVP

OFF

L

VDD < VUVP

OFF

L

Overvoltage (VIN > VOVP)

OFF

L

tPGD

Steady-state

ON

H

tPGA

Inrush

ON

L

tPGA

Transient overcurrent

ON

H

N/A

Circuit-breaker (persistent overcurrent followed by ITIMER expiry)

OFF

L (MODE = H)

H (MODE = L)

tPGD

N/A

Fast-trip

OFF

L (MODE = H)

H (MODE = L)

tPGD

N/A

Overtemperature

Shutdown

L (MODE = H)

H (MODE = L)

tPGD

N/A

After power up, PG is pulled low initially. The device initiates an inrush sequence in which the gate driver circuit starts charging the gate capacitance from the internal charge pump. When the FET gate voltage reaches the full overdrive indicating that the inrush sequence is complete and the device is capable of delivering full power, the PG pin is asserted HIGH after a de-glitch time (tPGA).

The PG is de-asserted if the FET is turned off at any time during normal operation. The PG de-assertion de-glitch time is tPGD.

TPS1685 TPS1685x PG Timing
                    Diagram Figure 7-7 TPS1685x PG Timing Diagram

The PG is an open-drain pin and must be pulled up to an external supply.

When there is no supply to the device, the PG pin is expected to stay low. However, there is no active pulldown in this condition to drive this pin all the way down to 0 V. If the PG pin is pulled up to an independent supply which is present even if the device is unpowered, there can be a small voltage seen on this pin depending on the pin sink current, which is a function of the pullup supply voltage and resistor. Minimize the sink current to keep this pin voltage low enough not to be detected as a logic HIGH by associated external circuits in this condition.

When the device is used in secondary mode (MODE = GND) in conjunction with another TPS1685x device as a primary device in a parallel chain, it controls the PG assertion during start-up, but after the device reaches steady-state, it no longer has control over the PG de-assertion. Refer to the Mode Selection (MODE) for more details.