The TPS22969 is a small, ultra-low RON, single channel load switch with controlled turn on. The device contains an N-channel MOSFET that can operate over an input voltage range of 0.8 V to 5.5 V and can support a maximum continuous
current of 6 A.
The combination of ultra-low RON and high current capability of the device makes it ideal for driving processor rails with very tight voltage dropout tolerances. The controlled rise time of the device greatly reduces inrush current caused by large bulk load capacitances, thereby reducing or eliminating voltage droop on the power supply. The switch can be independently controlled via the ON pin, which is capable of interfacing directly with low-voltage control signals originating from microcontrollers or low voltage discrete logic. The device further reduces the total solution size by integrating a 224-Ω pull-down resistor for quick output discharge (QOD) when the switch is turned off.
The TPS22969 is available in a small 3.00 mm x 3.00 mm SON-8 package (DNY). The DNY package integrates a thermal pad which allows for high power dissipation in high current and high temperature applications. The device is characterized for operation over the free-air temperature range of –40°C to 105°C.
ORDER NUMBER | PACKAGE | BODY SIZE (NOM) |
---|---|---|
TPS22969 | WSON (8) | 3.00 mm × 3.00 mm |
White space
White space
White space
Pin | I/O | DESCRIPTION | |
---|---|---|---|
NAME | NO. | ||
VIN | 1, 2 | I | Switch input. Place ceramic bypass capacitor(s) between this pin and GND. See the Detailed Description section for more information. |
VIN | Exposed thermal Pad | I | Switch input. Place ceramic bypass capacitor(s) between this pin and GND. See the Detailed Description section for more information. |
VBIAS | 3 | I | Bias voltage. Power supply to the device. |
ON | 4 | I | Active high switch control input. Do not leave floating. |
GND | 5 | – | Ground. |
VOUT | 6, 7, 8 | O | Switch output. Place ceramic bypass capacitor(s) between this pin and GND. See the Detailed Description section for more information. |
MIN | MAX | UNIT | ||
---|---|---|---|---|
VIN | Input voltage range | –0.3 | 6 | V |
VBIAS | Bias voltage range | –0.3 | 6 | V |
VOUT | Output voltage range | –0.3 | 6 | V |
VON | ON pin voltage range | –0.3 | 6 | V |
IMAX | Maximum Continuous Switch Current | 6 | A | |
IPLS | Maximum Pulsed Switch Current, pulse < 300-µs, 2% duty cycle | 8 | A | |
TA | Operating free-air temperature range | –40 | 105 | °C |
TJ | Maximum junction temperature | 125 | °C | |
TSTG | Storage temperature range | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VIN | Input voltage range | 0.8 | VBIAS | V | |
VBIAS | Bias voltage range | 2.5 | 5.5 | V | |
VON | ON voltage range | 0 | 5.5 | V | |
VOUT | Output voltage range | VIN | V | ||
VIH, ON | High-level voltage, ON | VBIAS = 2.5V to 5.5V | 1.2 | 5.5 | V |
VIL, ON | Low-level voltage, ON | VBIAS = 2.5V to 5.5V | 0 | 0.5 | V |
CIN | Input Capacitor | 1(1) | µF |
THERMAL METRIC(1) | TPS22969 | UNIT | |
---|---|---|---|
DNY (WSON) | |||
8 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 44.6 | °C/W |
RθJCtop | Junction-to-case (top) thermal resistance | 44.4 | °C/W |
RθJB | Junction-to-board thermal resistance | 17.6 | °C/W |
ψJT | Junction-to-top characterization parameter | 0.4 | °C/W |
ψJB | Junction-to-board characterization parameter | 17.4 | °C/W |
RθJCbot | Junction-to-case (bottom) thermal resistance | 1.1 | °C/W |
PARAMETER | TEST CONDITIONS | TA | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|---|
CURRENTS AND THRESHOLDS | ||||||||
IQ, VBIAS | VBIAS quiescent current | IOUT = 0, VIN = VBIAS, VON = 5.0 V |
-40°C to 85°C | 20.4 | 26.0 | µA | ||
-40°C to 105°C | 27.0 | |||||||
ISD, VBIAS | VBIAS shutdown current | VON = 0 V, VOUT = 0 V | -40°C to 85°C | 1.1 | 1.5 | µA | ||
-40°C to 105°C | 1.6 | |||||||
ISD, VIN | VIN shutdown current | VON = 0 V, VOUT = 0 V |
VIN = 5.0 V | -40°C to 85°C | 0.1 | µA | ||
-40°C to 105°C | 0.5 | |||||||
VIN = 3.3 V | -40°C to 85°C | 0.1 | ||||||
-40°C to 105°C | 0.5 | |||||||
VIN = 1.8 V | -40°C to 85°C | 0.1 | ||||||
-40°C to 105°C | 0.5 | |||||||
VIN = 1.05 V | -40°C to 85°C | 0.1 | ||||||
-40°C to 105°C | 0.5 | |||||||
VIN = 0.8 V | -40°C to 85°C | 0.1 | ||||||
-40°C to 105°C | 0.5 | |||||||
ION | ON pin leakage current | VON = 5.5 V | -40°C to 105°C | 0.1 | µA | |||
VHYS, ON | ON pin hysteresis | VBIAS = VIN | 25°C | 113 | mV | |||
RESISTANCE CHARACTERISTICS | ||||||||
RON | On-state resistance | IOUT = –200 mA, VBIAS = 5.0 V |
VIN = 5.0 V | 25°C | 4.4 | 5.0 | mΩ | |
-40°C to 85°C | 5.6 | |||||||
-40°C to 105°C | 5.8 | |||||||
VIN = 3.3 V | 25°C | 4.4 | 5.0 | mΩ | ||||
-40°C to 85°C | 5.6 | |||||||
-40°C to 105°C | 5.8 | |||||||
VIN = 2.5 V | 25°C | 4.4 | 5.0 | mΩ | ||||
-40°C to 85°C | 5.6 | |||||||
-40°C to 105°C | 5.8 | |||||||
VIN = 1.8 V | 25°C | 4.4 | 5.0 | mΩ | ||||
-40°C to 85°C | 5.6 | |||||||
-40°C to 105°C | 5.8 | |||||||
VIN = 1.05 V | 25°C | 4.4 | 5.0 | mΩ | ||||
-40°C to 85°C | 5.6 | |||||||
-40°C to 105°C | 5.8 | |||||||
VIN = 0.8 V | 25°C | 4.4 | 5.0 | mΩ | ||||
-40°C to 85°C | 5.6 | |||||||
-40°C to 105°C | 5.8 | |||||||
IOUT = –6 A, VBIAS = 5.0 V |
VIN = 1.05 V | -40°C to 85°C | 4.6 | 5.8(1) | mΩ | |||
-40°C to 105°C | 6.0(1) | |||||||
RPD | Output pulldown resistance | VIN = 5.0 V, VON = 0 V, VOUT = 1 V | -40°C to 105°C | 224 | 233 | Ω |
PARAMETER | TEST CONDITIONS | TA | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|---|
CURRENTS AND THRESHOLDS | ||||||||
IQ, VBIAS | VBIAS quiescent current | IOUT = 0, VIN = VBIAS, VON = 5.0 V |
-40°C to 85°C | 9.9 | 12.5 | µA | ||
-40°C to 105°C | 12.7 | |||||||
ISD, VBIAS | VBIAS shutdown current | VON = 0 V, VOUT = 0 V | -40°C to 85°C | 0.5 | 0.65 | µA | ||
-40°C to 105°C | 0.7 | |||||||
ISD, VIN | VIN shutdown current | VON = 0 V, VOUT = 0 V |
VIN = 2.5 V | -40°C to 85°C | 0.1 | µA | ||
-40°C to 105°C | 0.5 | |||||||
VIN = 1.8 V | -40°C to 85°C | 0.1 | ||||||
-40°C to 105°C | 0.5 | |||||||
VIN = 1.05 V | -40°C to 85°C | 0.1 | ||||||
-40°C to 105°C | 0.5 | |||||||
VIN = 0.8 V | -40°C to 85°C | 0.1 | ||||||
-40°C to 105°C | 0.5 | |||||||
ION | ON pin input leakage current | VON = 5.5 V | -40°C to 105°C | 0.1 | µA | |||
VHYS, ON | ON pin hysteresis | VBIAS = VIN | 25°C | 83 | mV | |||
RESISTANCE CHARACTERISTICS | ||||||||
RON | On-state resistance | IOUT = –200 mA, VBIAS = 2.5 V |
VIN =2.5 V | 25°C | 4.7 | 5.3 | mΩ | |
-40°C to 85°C | 6.0 | |||||||
-40°C to 105°C | 6.2 | |||||||
VIN =1.8 V | 25°C | 4.6 | 5.2 | mΩ | ||||
-40°C to 85°C | 5.8 | |||||||
-40°C to 105°C | 6.0 | |||||||
VIN =1.05 V | 25°C | 4.5 | 5.1 | mΩ | ||||
-40°C to 85°C | 5.7 | |||||||
-40°C to 105°C | 5.9 | |||||||
VIN = 0.8 V | 25°C | 4.5 | 5.1 | mΩ | ||||
-40°C to 85°C | 5.7 | |||||||
-40°C to 105°C | 5.9 | |||||||
RPD | Output pulldown resistance | VIN = 2.5 V, VON = 0 V, VOUT = 1 V | -40°C to 105°C | 224 | 233 | Ω |
PARAMETER | TEST CONDITION | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VIN = 5 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted) | ||||||
tON | Turn-on time | RL = 10 Ω, CL = 0.1 µF | 2397 | µs | ||
tOFF | Turn-off time | 4 | ||||
tR | VOUT rise time | 2663 | ||||
tF | VOUT fall time | 2 | ||||
tD | Delay time | 1009 | ||||
VIN = 1.05 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted) | ||||||
tON | Turn-on time | RL = 10 Ω, CL = 0.1 µF | 1064 | µs | ||
tOFF | Turn-off time | 4 | ||||
tR | VOUT rise time | 599 | ||||
tF | VOUT fall time | 2 | ||||
tD | Delay time | 727 | ||||
VIN = 0.8 V, VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted) | ||||||
tON | Turn-on time | RL = 10 Ω, CL = 0.1 µF | 981 | µs | ||
tOFF | Turn-off time | 4 | ||||
tR | VOUT rise time | 500 | ||||
tF | VOUT fall time | 2 | ||||
tD | Delay time | 714 | ||||
VIN = 2.5 V, VON = 5 V, VBIAS = 2.5 V, TA = 25ºC (unless otherwise noted) | ||||||
tON | Turn-on time | RL = 10 Ω, CL = 0.1 µF | 1576 | µs | ||
tOFF | Turn-off time | 8 | ||||
tR | VOUT rise time | 1372 | ||||
tF | VOUT fall time | 2 | ||||
tD | Delay time | 865 | ||||
VIN = 1.05 V, VON = 5V, VBIAS = 2.5 V, TA = 25ºC (unless otherwise noted) | ||||||
tON | Turn-on time | RL = 10 Ω, CL = 0.1 µF | 1080 | µs | ||
tOFF | Turn-off time | 8 | ||||
tR | VOUT rise time | 604 | ||||
tF | VOUT fall time | 2 | ||||
tD | Delay time | 738 | ||||
VIN = 0.8 V, VON = 5V, VBIAS = 2.5 V, TA = 25ºC (unless otherwise noted) | ||||||
tON | Turn-on time | RL = 10 Ω, CL = 0.1 µF | 994 | µs | ||
tOFF | Turn-off time | 8 | ||||
tR | VOUT rise time | 502 | ||||
tF | VOUT fall time | 2 | ||||
tD | Delay time | 723 |
VIN = VBIAS | VON = 5 V | IOUT = 0 A |
VBIAS = 5 V | VON = 0 V | VOUT = 0 V |
VBIAS = 5 V | VON = 5 V | IOUT = –200 mA |
VBIAS = 5 V | VON = 5 V | IOUT = –200 mA |
VON = 0 V | VIN = 1.05 V | VOUT = 1 V |
VBIAS = 5 V | VON = 5 V | TA = 25°C |
VIN = VBIAS | IOUT = 0 A | |
VBIAS = 2.5 V | RL = 10 Ω | CL = 0.1 µF |
VBIAS = 2.5 V | RL = 10 Ω | CL = 0.1 µF |
VBIAS = 2.5 V | RL = 10 Ω | CL = 0.1 µF |
VBIAS = 2.5 V | RL = 10 Ω | CL = 0.1 µF |
VBIAS = 2.5 V | RL = 10 Ω | CL = 0.1 µF |
TA = 25°C | RL = 10 Ω | CL = 0.1 µF |
VIN = VBIAS | VON = 0 V | VOUT = 0 V |
VBIAS = 2.5 V | VON = 5 V | IOUT = –200 mA |
VBIAS = 2.5 V | VON = 5 V | IOUT = –200 mA |
TA = 25°C | VON = 5 V | IOUT = –200 mA |
VBIAS = 2.5 V | VON = 5 V | TA = 25°C |
VIN = VBIAS | ||
VIN = VBIAS | IOUT = 0 A | |
VBIAS = 5 V | RL = 10 Ω | CL = 0.1 µF |
VBIAS = 5 V | RL = 10 Ω | CL = 0.1 µF |
VBIAS = 5 V | RL = 10 Ω | CL = 0.1 µF |
VBIAS = 5 V | RL = 10 Ω | CL = 0.1 µF |
VBIAS = 5 V | RL = 10 Ω | CL = 0.1 µF |
TA = 25°C | RL = 10 Ω | CL = 0.1 µF |
The device is a 5.5 V, 6 A load switch in a 8-pin SON package. To reduce voltage drop for low voltage and high current rails, the device implements an ultra-low resistance N-channel MOSFET which reduces the drop out voltage through the device.
The device has a controlled and fixed slew rate which helps reduce or eliminate power supply droop due to large inrush currents. During shutdown, the device has very low leakage currents, thereby reducing unnecessary leakages for downstream modules during standby. Integrated control logic, driver, charge pump, and output discharge FET eliminates the need for any external components, which reduces solution size and BOM count.
The ON pin controls the state of the load switch, and asserting the pin high (active high) enables the switch. The ON pin is compatible with standard GPIO logic threshold and can be used with any microcontroller or discrete logic with 1.2-V or higher GPIO voltage. This pin cannot be left floating and must be tied either high or low for proper functionality.
To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1-µF ceramic capacitor, CIN, placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce the voltage drop in high-current application. When switching heavy loads, it is recommended to have an input capacitor 10 times higher than the output capacitor to avoid excessive voltage drop; however, a 10 to 1 ratio for capacitance is not required for proper functionality of the device, but a ratio smaller than 10 to 1 (such as 1 to 1) could cause a VIN dip upon turn-on due to inrush currents based on external factor such as board parasitics and output bulk capacitance.
Due to the integrated body diode in the N-channel MOSFET, a CIN greater than CL is highly recommended. A CL greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current flow through the body diode from VOUT to VIN. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN dip caused by inrush currents during startup, however a 10 to 1 ratio for capacitance is not required for proper functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause a VIN dip upon turn-on due to inrush currents based on external factor such as board parasitics and output bulk capacitance.
For optimal RON performance, make sure VIN ≤ VBIAS. The device may still be functional if VIN > VBIAS but it will exhibit RON greater than what is listed in the Electrical Characteristics table. See Figure 26 for an example of a typical device. Notice the increasing RON as VIN increases. Be sure to never exceed the maximum voltage rating for VIN and VBIAS. Performance of the device is not guaranteed for VIN > VBIAS.