SLVSER7
October 2020
TPS23731
PRODUCTION DATA
1
Features
2
Applications
3
Description
4
Revision History
5
Device Comparison Table
6
Pin Configuration and Functions
7
Specifications
7.1
Absolute Maximum Ratings
7.2
ESD Ratings
7.3
Recommended Operating Conditions
7.4
Thermal Information
7.5
Electrical Characteristics: DC-DC Controller Section
7.6
Electrical Characteristics PoE
14
7.7
Typical Characteristics
8
Detailed Description
8.1
Overview
8.2
Functional Block Diagram
8.3
Feature Description
8.3.1
CLS Classification
8.3.2
DEN Detection and Enable
8.3.3
APD Auxiliary Power Detect
8.3.4
Internal Pass MOSFET
8.3.5
T2P and APDO Indicators
8.3.6
DC-DC Controller Features
8.3.6.1
VCC, VB, VBG and Advanced PWM Startup
27
8.3.6.2
CS, Current Slope Compensation and blanking
8.3.6.3
COMP, FB, EA_DIS, CP, PSRS and Opto-less Feedback
8.3.6.4
FRS Frequency Setting and Synchronization
8.3.6.5
DTHR and Frequency Dithering for Spread Spectrum Applications
8.3.6.6
SST and Soft-Start of the Switcher
8.3.6.7
SST, I_STP, LINEUV and Soft-Stop of the Switcher
8.3.7
Switching FET Driver - GATE
8.3.8
EMPS and Automatic MPS
8.3.9
VDD Supply Voltage
8.3.10
RTN, AGND, GND
8.3.11
VSS
8.3.12
Exposed Thermal pads - PAD_G and PAD_S
8.4
Device Functional Modes
8.4.1
PoE Overview
8.4.2
Threshold Voltages
8.4.3
PoE Start-Up Sequence
8.4.4
Detection
8.4.5
Hardware Classification
8.4.6
Maintain Power Signature (MPS)
8.4.7
Advanced Start-Up and Converter Operation
8.4.8
Line Undervoltage Protection and Converter Operation
8.4.9
PD Self-Protection
8.4.10
Thermal Shutdown - DC-DC Controller
8.4.11
Adapter ORing
9
Application and Implementation
9.1
Application Information
9.2
Typical Application
9.2.1
Design Requirements
9.2.1.1
Detailed Design Procedure
9.2.1.1.1
Input Bridges and Schottky Diodes
9.2.1.1.2
Input TVS Protection
9.2.1.1.3
Input Bypass Capacitor
9.2.1.1.4
Detection Resistor, RDEN
9.2.1.1.5
Classification Resistor, RCLS.
9.2.1.1.6
APD Pin Divider Network, RAPD1, RAPD2
9.2.1.1.7
Setting Frequency (RFRS) and Synchronization
9.2.1.1.8
Bias Supply Requirements and CVCC
9.2.1.1.9
APDO, T2P Interface
9.2.1.1.10
Output Voltage Feedback Divider, RAUX, R1,R2
9.2.1.1.11
Frequency Dithering for Conducted Emissions Control
10
Power Supply Recommendations
11
Layout
11.1
Layout Guidelines
11.2
Layout Example
11.3
EMI Containment
11.4
Thermal Considerations and OTSD
11.5
ESD
12
Device and Documentation Support
12.1
Documentation Support
12.1.1
Related Documentation
12.2
Support Resources
12.3
Trademarks
12.4
Electrostatic Discharge Caution
12.5
Glossary
13
Mechanical, Packaging, and Orderable Information
Package Options
Mechanical Data (Package|Pins)
RMT|45
MPQF583
Thermal pad, mechanical data (Package|Pins)
Orderable Information
slvser7_oa
slvser7_pm
11.3
EMI Containment
Use compact loops for dv/dt and di/dt circuit paths (power loops and gate drives).
Use minimal, yet thermally adequate, copper areas for heat sinking of components tied to switching nodes (minimize exposed radiating surface).
Use copper ground planes (possible stitching) and top layer copper floods (surround circuitry with ground floods).
Use 4 layer PCB if economically feasible (for better grounding).
Minimize the amount of copper area associated with input traces (to minimize radiated pickup).
Use Bob Smith terminations, Bob Smith EFT capacitor, and Bob Smith plane.
Use Bob Smith plane as ground shield on input side of PCB (creating a phantom or literal earth ground).
Use of ferrite beads on input (allow for possible use of beads or 0-Ω resistors).
Maintain physical separation between input-related circuitry and power circuitry (use ferrite beads as boundary line).
Possible use of common-mode inductors.
Possible use of integrated RJ-45 jacks (shielded with internal transformer and Bob Smith terminations).
End-product enclosure considerations (shielding).