SLVSER7 October   2020 TPS23731

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: DC-DC Controller Section
    6. 7.6 Electrical Characteristics PoE
    7.     14
    8. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  CLS Classification
      2. 8.3.2  DEN Detection and Enable
      3. 8.3.3  APD Auxiliary Power Detect
      4. 8.3.4  Internal Pass MOSFET
      5. 8.3.5  T2P and APDO Indicators
      6. 8.3.6  DC-DC Controller Features
        1. 8.3.6.1 VCC, VB, VBG and Advanced PWM Startup
        2.       27
        3. 8.3.6.2 CS, Current Slope Compensation and blanking
        4. 8.3.6.3 COMP, FB, EA_DIS, CP, PSRS and Opto-less Feedback
        5. 8.3.6.4 FRS Frequency Setting and Synchronization
        6. 8.3.6.5 DTHR and Frequency Dithering for Spread Spectrum Applications
        7. 8.3.6.6 SST and Soft-Start of the Switcher
        8. 8.3.6.7 SST, I_STP, LINEUV and Soft-Stop of the Switcher
      7. 8.3.7  Switching FET Driver - GATE
      8. 8.3.8  EMPS and Automatic MPS
      9. 8.3.9  VDD Supply Voltage
      10. 8.3.10 RTN, AGND, GND
      11. 8.3.11 VSS
      12. 8.3.12 Exposed Thermal pads - PAD_G and PAD_S
    4. 8.4 Device Functional Modes
      1. 8.4.1  PoE Overview
      2. 8.4.2  Threshold Voltages
      3. 8.4.3  PoE Start-Up Sequence
      4. 8.4.4  Detection
      5. 8.4.5  Hardware Classification
      6. 8.4.6  Maintain Power Signature (MPS)
      7. 8.4.7  Advanced Start-Up and Converter Operation
      8. 8.4.8  Line Undervoltage Protection and Converter Operation
      9. 8.4.9  PD Self-Protection
      10. 8.4.10 Thermal Shutdown - DC-DC Controller
      11. 8.4.11 Adapter ORing
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Detailed Design Procedure
          1. 9.2.1.1.1  Input Bridges and Schottky Diodes
          2. 9.2.1.1.2  Input TVS Protection
          3. 9.2.1.1.3  Input Bypass Capacitor
          4. 9.2.1.1.4  Detection Resistor, RDEN
          5. 9.2.1.1.5  Classification Resistor, RCLS.
          6. 9.2.1.1.6  APD Pin Divider Network, RAPD1, RAPD2
          7. 9.2.1.1.7  Setting Frequency (RFRS) and Synchronization
          8. 9.2.1.1.8  Bias Supply Requirements and CVCC
          9. 9.2.1.1.9  APDO, T2P Interface
          10. 9.2.1.1.10 Output Voltage Feedback Divider, RAUX, R1,R2
          11. 9.2.1.1.11 Frequency Dithering for Conducted Emissions Control
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 EMI Containment
    4. 11.4 Thermal Considerations and OTSD
    5. 11.5 ESD
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Support Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

T2P and APDO Indicators

The state of T2P is used to provide information relative to the allocated power. Table 8-2 lists T2P state corresponding to various combinations of PSE Type, PD Class and allocated power. The allocated power is determined by the number of classification cycles having been received. The PSE may also allocate a lower power than what the PD is requesting, in which case there is power demotion. The APDO output can also be used to indicate the presence of auxiliary power adapter via the APD input.

Table 8-2 T2P and Allocated Power Truth Table, with APD Low
PSE TYPEPD CLASSNUMBER OF CLASS CYCLESPSE ALLOCATED POWER AT PD (W)T2P(1)
1-40112.95HIGH
1-4113.84HIGH
1-4216.49HIGH
1-43112.95HIGH
24225.5LOW
3-442,325.5LOW
If APD is high, both T2P and APDO outputs become low.

During startup, the T2P output is enabled only once the DC-DC controller has reached steady-state, the soft-start having been completed. This output will return to a high-impedance state in any of the following cases:

  • DC-DC controller is back to soft-start mode
  • DC-DC controller transitions to soft-stop mode
  • DC-DC controller shuts off due to reasons including VVCC falling below VCUVLO_F, or the PoE hotswap is in inrush limit while APD is low
  • The device enters thermal shutdown

Note that in all these cases, as long as VDD-to-VSS voltage remains above the mark reset threshold, the internal logic state of this signal is remembered such that this output will be activated accordingly after the soft-start has completed. This circuit resets when the VDD-to-VSS voltage drops below the mark reset threshold. The T2P can be left unconnected if not used.