SLVSDW2B December   2018  – November 2020 TPS23755

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: DC-DC Controller Section
    6. 6.6 Electrical Characteristics: PoE and Control
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  CLS Classification
      2. 7.3.2  DEN Detection and Enable
      3. 7.3.3  Internal Pass MOSFET
      4. 7.3.4  DC-DC Controller Features
        1. 7.3.4.1 VCC, VB and Advanced PWM Startup
        2. 7.3.4.2 CS, Current Slope Compensation and Blanking
        3. 7.3.4.3 COMP, FB, CP and Opto-less Feedback
        4. 7.3.4.4 FRS Frequency Setting and Synchronization
        5. 7.3.4.5 Frequency Dithering for Spread Spectrum Applications
        6. 7.3.4.6 SST and Soft-Start of the Switcher
        7. 7.3.4.7 AUX_V, AUX_D and Secondary Adapter Or'ing
      5. 7.3.5  Internal Switching FET - DRAIN, RSNS, SRF and SRR
      6. 7.3.6  VPD Supply Voltage
      7. 7.3.7  VDD Supply Voltage
      8. 7.3.8  GND
      9. 7.3.9  VSS
      10. 7.3.10 Exposed Thermal PAD
    4. 7.4 Device Functional Modes
      1. 7.4.1 PoE Overview
      2. 7.4.2 Threshold Voltages
      3. 7.4.3 PoE Start-Up Sequence
      4. 7.4.4 Detection
      5. 7.4.5 Hardware Classification
      6. 7.4.6 Maintain Power Signature (MPS)
      7. 7.4.7 Start-Up and Converter Operation
      8. 7.4.8 PD Self-Protection
      9. 7.4.9 Adapter ORing
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Input Bridges and Schottky Diodes
        2. 8.2.2.2  Protection, D1
        3. 8.2.2.3  Capacitor, C1
        4. 8.2.2.4  Detection Resistor, RDEN
        5. 8.2.2.5  Classification Resistor, RCLS
        6. 8.2.2.6  Bulk Capacitance, CBULK
        7. 8.2.2.7  Output Voltage Feedback Divider, RAUX, R1,R2
        8. 8.2.2.8  Setting Frequency, RFRS
        9. 8.2.2.9  Frequency Dithering, RDTR and CDTR
        10. 8.2.2.10 Bias Voltage, CVB and DVB
        11. 8.2.2.11 Transformer design, T1
        12. 8.2.2.12 Current Sense Resistor, RCS
        13. 8.2.2.13 Current Slope Compensation, RS
        14. 8.2.2.14 Bias Supply Requirements, CCC, DCC
        15. 8.2.2.15 Switching Transformer Considerations, RVCC and CCC2
        16. 8.2.2.16 Primary FET Clamping, RCL, CCL, and DCL
        17. 8.2.2.17 Converter Output Capacitance, COUT
        18. 8.2.2.18 Secondary Output Diode Rectifier, DOUT
        19. 8.2.2.19 Slew rate control, RSRF and RSRR
        20. 8.2.2.20 Shutdown at Low Temperatures, DVDD and CVDD
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related documentation
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
  • RJJ|23
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Voltage Feedback Divider, RAUX, R1,R2

R1, R2 and RAUX set the output voltage of the bias winding of the converter. For applications that do not use AUX_D functionality, RAUX should not be populated and Equation 5 should be used.

Equation 5. GUID-30410DB3-18A1-43BB-A644-D0C39C5C013F-low.gif

For secondary side adapter priority applications, the DC/DC output voltage can be set lower than the adapter voltage by pulling AUX_D to RTN. Equation 6 should be used first to determine the lower output voltage when adapter is present.

Equation 6. GUID-30410DB3-18A1-43BB-A644-D0C39C5C013F-low.gif

when Aux_D is LOW.

Then Raux can be calculated using Equation 7 to set the nominal output voltage of the bias winding.

Equation 7. GUID-8E781DBB-05E2-4992-AC47-673AD0C35927-low.gif

when Aux_D is HIGH.

When transitioning from the normal operating output voltage to a lower output voltage when Aux_D is pulled LOW, switching may stop until the VCC voltage can reduce its voltage to the lower VCC voltage. The output voltage may drop during this time due to the loss of switching. Typically this is not a concern since the adapter is providing power to the load. A combination of adding a dummy load in parallel with CCC and increasing the secondary output capacitance can minimize the time that switching stops.

In applications that use smooth transition between adapter the PoE, circuitry should be added to keep the PSE connected to the PD and the converter operational while maintaining adapter priority. It is recommended to refer to the TPS23755EVM-894.