SLUS634F November   2004  – January 2022 TPS2384

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 PMM Faults
      2. 8.3.2 Watchdog Timer
    4. 8.4 Device Functional Modes
      1. 8.4.1  Auto Mode
      2. 8.4.2  Auto Mode Functional Description
        1. 8.4.2.1 AM Discovery
        2. 8.4.2.2 AM Classification
        3. 8.4.2.3 AM Power Delivery
      3. 8.4.3  AM Faults and INTB Output
      4. 8.4.4  Over and Undervoltage Fault
      5. 8.4.5  Over Current or Current Limit Faults
      6. 8.4.6  Undercurrent Fault (DC Modulated Disconnect)
      7. 8.4.7  Power Management Mode (PMM)
        1. 8.4.7.1 13 PMM Functions
      8. 8.4.8  PMM Discovery 1
      9. 8.4.9  PMM Discovery 2
      10. 8.4.10 PMM Classification
      11. 8.4.11 PMM Legacy
      12. 8.4.12 PMM Rup Pwr
      13. 8.4.13 PMM RDWN
    5. 8.5 Programming
      1. 8.5.1 I2C Interface Description
      2. 8.5.2 Start and Stop
      3. 8.5.3 Chip Address
      4. 8.5.4 Chip Addressing
      5. 8.5.5 Data Write Cycle
      6. 8.5.6 Port and Register Cycle
      7. 8.5.7 Data Read Cycle
    6. 8.6 Register Maps
      1. 8.6.1 Register/Port Addressing Map
      2. 8.6.2 Common Read, Register Select
      3. 8.6.3 Common Write, Register Select = 1111 (Test Register)
      4. 8.6.4 Common Control Write, Register Select = 0001
      5. 8.6.5 Port Control Write 1, Register Select = 0010 (One Per Port)
      6. 8.6.6 Port Control Write 2, Register Select = 0011 (One Per Port)
      7. 8.6.7 Port Status Read 1, Register Select = 0100 (One Per Port)
      8. 8.6.8 Port Status Read 2, Register Select = 0101 (One Per Port)
      9. 8.6.9 A/D Results Registers (Discovery Current, Voltage, Current and Temperature)
        1. 8.6.9.1 Discovery Current — Lower Bits, Register Select = 0110 (One Per Port)
        2. 8.6.9.2 Discovery Current — Upper Bits, Register Select = 0111 (One Per Port)
        3. 8.6.9.3 Voltage — Lower Bits, Register Select = 1000 (One Per Port)
        4. 8.6.9.4 Voltage — Upper Bits, Register Select = 1001 (One Per Port)
        5. 8.6.9.5 Current — Lower Bits, Register Select = 1010 (One Per Port)
        6. 8.6.9.6 Current — Upper Bits, Register Select = 1011 (One Per Port)
        7. 8.6.9.7 Temperature — Lower Bits, Register Select = 1100 (One Per Port)
        8. 8.6.9.8 Temperature — Upper Bits, Register Select = 1101 (One Per Port)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 AC Disconnect Drive Circuit Detail
      2. 9.1.2 Connection of Unused Ports and Pins
      3. 9.1.3 Opto-isolator Interface
      4. 9.1.4 Port Protection from Electrical Transients
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Power Pin Bypass Capacitors
        2. 9.2.2.2 Per Port Components
        3. 9.2.2.3 Bias and Timing
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Local Circuits
      2. 11.1.2 System Protection Circuits
    2. 11.2 Layout Example
    3. 11.3 Thermal Consideration
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Chip Address

The address field of the TPS2384 is 8 bits long and contains 5 bits of device address select, a read/write bit, and two spare bits per Table 8-1. The five device address select bits follow this plan. These bits are compared against the hard-wired state of the corresponding device address select pins (A1–A5). When the field contents are equivalent to the pin logic states, the device is addressed. These bits are followed by LSB bit, which is used to set the read or write condition (1 for read and 0 for write). Following a start condition and an address field, the TPS2384 responds with an acknowledge by pulling the SDA_O line low during the 9th clock cycle if the address field is equivalent to the value programmed by the pins. The SDA_O line remains a stable low while the 9th clock pulse is high.

GUID-EA0303A0-5423-41E6-B35F-6D7DB62B0349-low.gifFigure 8-18 I2C Read and Write Cycles