SLUSCP2 September   2016 TPS2549

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  FAULT Response
      2. 8.3.2  Cable Compensation
        1. 8.3.2.1 Design Procedure
      3. 8.3.3  D+ and D- Protection
      4. 8.3.4  Output and D+ or D- Discharge
      5. 8.3.5  Port Power Management (PPM)
        1. 8.3.5.1 Benefits of PPM
        2. 8.3.5.2 PPM Details
        3. 8.3.5.3 Implementing PPM in a System With Two Charging Ports (CDP and SDP1)
        4. 8.3.5.4 Implementing PPM in a System With Two Charging Ports (DCP and DCP1)
      6. 8.3.6  CDP and SDP Auto Switch
      7. 8.3.7  Overcurrent Protection
      8. 8.3.8  Undervoltage Lockout
      9. 8.3.9  Thermal Sensing
      10. 8.3.10 Current Limit Setting
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device Truth Table (TT)
      2. 8.4.2 USB Specification Overview
      3. 8.4.3 Standard Downstream Port (SDP) Mode — USB 2.0 and USB 3.0
      4. 8.4.4 Charging Downstream Port (CDP) Mode
      5. 8.4.5 Dedicated Charging Port (DCP) Mode
        1. 8.4.5.1 DCP BC1.2 and YD/T 1591-2009
        2. 8.4.5.2 DCP Divider-Charging Scheme
        3. 8.4.5.3 DCP 1.2-V Charging Scheme
      6. 8.4.6 DCP Auto Mode
      7. 8.4.7 Client Mode
      8. 8.4.8 High-Bandwidth Data-Line Switches
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Input and Output Capacitance
        2. 9.2.2.2 Cable Compensation Calculation
        3. 9.2.2.3 Power Dissipation and Junction Temperature
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

Voltages are with respect to GND unless otherwise noted(1)
MIN MAX UNIT
Voltage range CS, CTL1, CTL2, CTL3, EN, FAULT, ILIM_HI, ILIM_LO, IN, OUT, STATUS –0.3 7 V
DM_IN, DM_OUT, DP_IN, DP_OUT –0.3 5.7 V
IN to OUT –7 7 V
Continuous current in SDP, CDP or client mode DP_IN to DP_OUT or DM_IN to DM_OUT –100 100 mA
Continuous current in BC1.2 DCP mode DP_IN to DM_IN –35 35 mA
Continuous output current OUT Internally limited A
I(SRC) Continuous output source current ILIM_HI, ILIM_LO Internally limited A
I(SNK) Continuous output sink current FAULT, STATUS 25 mA
CS Internally limited A
TJ Operating junction temperature –40 Internally limited °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2,000 V
Charged-device model (CDM),per JEDEC specification JESD22-C101(2) ±750
IEC(3) IEC61000-4-2 contact discharge, DP_IN and DM_IN ±8,000
IEC61000-4-2 air discharge, DP_IN and DM_IN ±15,000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
(3) Surges per IEC61000-4-2, 1999 applied between DP_IN/DM_IN and output ground of the TPS2549Q1EVM-729 (SLVUAK6) evaluation module.

6.3 Recommended Operating Conditions

Voltages are with respect to GND unless otherwise noted.
MIN NOM MAX UNIT
V(IN) Supply voltage IN 4.5 6.5 V
Input voltage CTL1, CTL2, CTL3, EN 0 6.5 V
DM_IN, DM_OUT, DP_IN, DP_OUT 0 3.6 V
I(OUT) Output continuous current OUT (–40°C ≤ TA ≤ 85°C) 3 A
Continuous current in SDP, CDP or client mode DP_IN to DP_OUT or DM_IN to DM_OUT –30 30 mA
Continuous current in BC1.2 DCP mode DP_IN to DM_IN –15 15 mA
Continuous output sink current FAULT, STATUS 10 mA
R(ILIM_xx) Current limit-set resistors 15.4 1000
TJ Operating junction temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) TPS2549 UNIT
RTE (WQFN)
16 PINS
RθJA Junction-to-ambient thermal resistance 44.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 53.3 °C/W
RθJB Junction-to-board thermal resistance 17.6 °C/W
ψJT Junction-to-top characterization parameter 1 °C/W
ψJB Junction-to-board characterization parameter 17.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 4.1 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Unless otherwise noted, –40°C ≤ TJ ≤ 125°C and 4.5 V ≤ V(IN) ≤ 6.5 V, V(EN) = V(IN), V(CTL1) = V(CTL2) = V(CTL3) = V(IN). R(FAULT) = R(STATUS) = 10 kΩ, R(ILIM_HI) = 19.1 kΩ, R(ILIM_LO) = 80.6 kΩ. Positive currents are into pins. Typical values are at 25°C. All voltages are with respect to GND.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OUT – POWER SWITCH
rDS(on) On-resistance(1) TJ = 25°C 47 57
–40°C ≤ TJ ≤ 85°C 47 72
–40°C ≤TJ ≤ 125°C 47 80
Ilkg(OUT) Reverse leakage current on OUT pin VOUT = 6.5 V, VIN = VEN = 0 V, –40°C ≤ TJ ≤ 85°C, measure I(OUT) 2 µA
OUT - DISCHARGE
R(DCHG) OUT discharge resistance 400 500 630 Ω
EN, CTL1, CTL2, CTL3 INPUTS
Input pin rising logic threshold voltage 1 1.35 2 V
Input pin falling logic threshold voltage 0.85 1.15 1.65 V
Hysteresis(2) 200 mV
Input current Pin voltage = 0 V or 6.5 V –1 1 µA
CURRENT LIMIT
IOS OUT short-circuit current limit R(ILIM_LO) = 210 kΩ 205 255 305 mA
R(ILIM_LO) = 80.6 kΩ 600 660 720
R(ILIM_LO) = 23.2 kΩ 2145 2300 2455
R(ILIM_HI) = 20 kΩ 2500 2670 2840
R(ILIM_HI) = 19.1 kΩ 2620 2800 2975
R(ILIM_HI) = 15.4 kΩ 3255 3470 3685
R(ILIM_HI) shorted to GND 5500 7000 8000
SUPPLY CURRENT
I(IN_OFF) Disabled IN supply current V(EN) = 0 V, V(OUT) = 0 V, –40°C ≤ TJ ≤ 85°C 0.1 5 µA
I(IN_ON) Enabled IN supply current V(CTL)1 = V(CTL2) = V(CTL3) = V(IN) 220 300 µA
V(CTL1) = V(CTL2) = 0 V, V(CTL3) = V(IN) 226 300
V(CTL2) = V(IN), V(CTL1) = V(CTL3) = 0 V 150 220
V(CTL1) = V(IN), V(CTL2) = V(CTL3) = 0 V 115 190
UNDERVOLTAGE LOCKOUT, IN
V(UVLO) IN rising UVLO threshold voltage 3.9 4.1 4.3 V
Hysteresis(3) TJ = 25°C 100 mV
FAULT
Output low voltage I(FAULT) = 1 mA 100 mV
Off-state leakage V(FAULT) = 6.5 V 2 µA
STATUS
Output low voltage I(STATUS) = 1 mA 100 mV
Off-state leakage V(STATUS) = 6.5 V 2 µA
THERMAL SHUTDOWN
T(OTSD2) Thermal shutdown threshold 155 °C
T(OTSD1) Thermal shutdown threshold in current-limit 135 °C
Hysteresis(3) 20 °C
LOAD DETECT (VCTL1 = VCTL2 = VCTL3 = VIN)
I(LD) IOUT load detection threshold R(ILIM_LO) = 80.6 kΩ, rising load current 630 700 770 mA
Hysteresis(3) 50 mA
DP_IN AND DM_IN SHORT-TO-VBUS PROTECTION
V(OV) Overvoltage protection trip threshold DP_IN and DM_IN rising 3.7 3.9 4.15 V
Hysteresis(3) 100 mV
R(DCHG_Data) Discharge resistance after OVP V(DP_IN) = V(DM_IN) = 5 V 160 210 240
CABLE COMPENSATION
I(CS) Sink current Load = 3 A, 2.5 V ≤ V(CS) ≤ 6.5 V 214 225 236 µA
Load = 2.4 A, 2.5 V ≤ V(CS) ≤ 6.5 V 171 180 189
Load = 2.1 A, 2.5 V ≤ V(CS) ≤ 6.5 V 149 158 166
Load = 1 A, 2.5 V ≤ V(CS) ≤ 6.5 V 70 75 80
HIGH-BANDWIDTH ANALOG SWITCH
R(HS_ON) DP and DM switch on-resistance V(DP_OUT) = V(DM_OUT) = 0 V, I(DP_IN) = I(DM_IN) = 30 mA 2 4 Ω
V(DP_OUT) = V(DM_OUT) = 2.4 V, I(DP_IN) = I(DM_IN) = –15 mA 2.9 6
|ΔR(HS_ON)| Switch resistance mismatch between DP and DM channels V(DP_OUT) = V(DM_OUT) = 0 V, I(DP_IN) = I(DM_IN) = 30 mA 0.05 0.15 Ω
V(DP_OUT) = V(DM_OUT) = 2.4 V, I(DP_IN) = I(DM_IN) = –15 mA 0.05 0.15
C(IO_OFF) DP/DM switch off-state capacitance(4) VEN = 0 V, V(DP_IN) = V(DM_IN) = 0.3 V,
Vac = 0.03 VPP , f = 1 MHz
6.7 pF
C(IO_ON) DP/DM switch on-state capacitance(4) V(DP_IN) = V(DM_IN) = 0.3 V,
Vac = 0.03 VPP, f = 1 MHz
10 pF
Off-state isolation(4) VEN = 0 V, f = 250 MHz 27 dB
On-state cross-channel isolation(4) f = 250 MHz 23 dB
Ilkg(OFF) Off-state leakage current, DP_OUT and DM_OUT VEN = 0 V, V(DP_IN) = V (DM_IN) = 3.6 V, V(DP_OUT) = V(DM_OUT) = 0 V 0.1 1.5 µA
BW Bandwidth (–3 dB)(4) R(L) = 50 Ω 925 MHz
CHARGING DOWNSTREAM PORT DETECT
V(DM_SRC) DM_IN CDP output voltage V(DP_IN) = 0.6 V, –250 µA < I(DM_IN) < 0 µA 0.5 0.6 0.7 V
V(DAT_REF) DP_IN rising lower window threshold for VDM_SRC activation 0.36 0.4 V
Hysteresis(4) 50 mV
V(LGC_SRC) DP_IN rising upper window threshold for VDM_SRC de-activation 0.8 0.88 V
V(LGC_SRC_HYS) Hysteresis(4) 100 mV
I(DP_SINK) DP_IN sink current V(DP_IN) = 0.6 V 40 75 100 µA
BC1.2 DCP MODE
R(DPM_SHORT) DP_IN and DM_IN shorting resistance 125 200 Ω
DIVIDER3 MODE
V(DP_DIV3) DP_IN output voltage 2.57 2.7 2.84 V
V(DM_DIV3) DM_IN output voltage 2.57 2.7 2.84 V
R(DP_DIV3) DP_IN output impedance I(DP_IN) = –5 µA 24 30 36
R(DM_DIV3) DM_IN output impedance I(DM_IN) = –5 µA 24 30 36
1.2-V MODE
V(DP_1.2V) DP_IN output voltage 1.12 1.2 1.26 V
V(DM_1.2V) DM_IN output voltage 1.12 1.2 1.26 V
R(DP_1.2V) DP_IN output impedance I(DP_IN) = –5 µA 84 100 126
R(DM_1.2V) DM_IN output impedance I(DM_IN = –5 µA 84 100 126
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account separately.
(2) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's product warranty.
(3) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's product warranty.
(4) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's product warranty.

6.6 Switching Characteristics

Unless otherwise noted –40°C ≤ TJ ≤ 125°C and 4.5 V ≤ V(IN) ≤ 6.5 V, V(EN) = V(IN), V(CTL1) = V(CTL2) = V(CTL3) = V(IN). R(FAULT) = R(STATUS) = 10 kΩ, R(ILIM_HI) = 19.1 kΩ, R(ILIM_LO) = 80.6 kΩ. Positive current is into pins. Typical value is at 25°C. All voltages are with respect to GND.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tr OUT voltage rise time V(IN) = 5 V, C(L) = 1 µF, R(L) = 100 Ω (see Figure 32 and Figure 33) 0.7 1.14 2 ms
tf OUT voltage fall time 0.2 0.35 0.6 ms
ton OUT voltage turnon time V(IN) = 5 V, C(L) = 1 µF, R(L) = 100 Ω (see Figure 32 andFigure 35) 4.15 6 ms
toff OUT voltage turnoff time 1.8 3 ms
t(DCHG_L) Long OUT discharge hold time (SDP, CDP, or client mode to DCP_Auto) Time V(OUT) < 0.7 V (see Figure 34) 1.1 2 2.9 s
t(DCHG_S) Short OUT discharge hold time (DCP_Auto to SDP, CDP, or client mode) Time V(OUT) < 0.7 V (see Figure 34) 186 320 450 ms
t(IOS) OUT short-circuit response time(1) V(IN) = 5 V, R(SHORT) = 50 mΩ (see Figure 25) 2 µs
t(OC_OUT_FAULT) OUT FAULT deglitch time Bidirectional deglitch applicable to current limit condition only (no deglitch assertion for OTSD) 5.5 8 11.5 ms
tpd Analog switch propagation delay (1) V(IN) = 5 V 0.14 ns
t(SK) Analog switch skew between opposite transitions of the same port (tPHL – tPLH) (1) V(IN) = 5 V 0.02 ns
t(LD_SET) Load-detect set time V(IN) = 5 V (See Figure 27) 120 210 280 ms
t(LD_RESET) Load-detect reset time V(IN) = 5 V (See Figure 28) 1.8 3 4.2 s
t(OV_D) DP_IN and DM_IN over-voltage protection response time V(OUT) = 5 V (See Figure 29) 2 µs
t(OV_D_FAULT) DP_IN and DM_IN FAULT degltich time V(OUT) = 5 V (See Figure 30) 11 16 23 ms
(1) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's product warranty.

6.7 Typical Characteristics

TPS2549 D001_SLUSCE3.gif
VIN = 5 V
Figure 1. Power Switch On-Resistance vs Temperature
TPS2549 D002_SLUSCE3.gif
VIN = 5 V
Figure 2. Reverse Leakage Current vs Temperature
TPS2549 D003_SLUSCE3.gif
A
Figure 3. OUT Discharge Resistance vs Temperature
TPS2549 D005_SLUSCE3.gif
CTL1 = 1 CTL2 = 1 CTL3 = 1
Figure 5. Disabled IN Supply Current vs Temperature
TPS2549 D007_SLUSCE3.gif
CTL1 = 0 CTL2 = 0 CTL3 = 1
Figure 7. Enabled IN Supply Current – DCP_Auto (001) vs Temperature
TPS2549 D009_SLUSCE3.gif
CTL1 = 1 CTL2 = 0 CTL3 = 0
Figure 9. Enabled IN Supply Current – Client Mode (100) vs Temperature
TPS2549 D011_SLUSCE3.gif
VIN = 5 V
Figure 11. DP_IN Overvoltage Protection Threshold vs Temperature
TPS2549 D013_SLUSCE3.gif
VIN = 5 V VCS = 2. 5 V
Figure 13. ICS vs Temperature
TPS2549 XmitChar_SLUSCE3.gif
Figure 15. Data Transmission Characteristics vs Frequency
TPS2549 xChanIso_SLUSCE3.gif
Figure 17. On-State Cross-Channel Isolation vs Frequency
TPS2549 D004_SLUSCE3.gif
VIN = 5 V
Figure 4. OUT Short-Circuit Current Limit vs Temperature
TPS2549 D006_SLUSCE3.gif
CTL1 = 1 CTL2 = 1 CTL3 = 1
Figure 6. Enabled IN Supply Current – CDP (111) vs Temperature
TPS2549 D008_SLUSCE3.gif
CTL1 = 0 CTL2 = 1 CTL3 = 0
Figure 8. Enabled IN Supply Current – SDP (010) vs Temperature
TPS2549 D010_SLUSCE3.gif
R(ILIM_LO) = 80.6 kΩ
Figure 10. IOUT Rising Load-Detect Threshold and OUT Short-Circuit Current Limit vs Temperature
TPS2549 D012_SLUSCE3.gif
VIN = 5 V
Figure 12. DM_IN Overvoltage Protection Threshold vs Temperature
TPS2549 D014_SLUSCE3.gif
VIN = 6.5 V
Figure 14. ICS vs VCS Voltage
TPS2549 DataSwIso_SLUSCE3.gif
Figure 16. Off-State Data-Switch Isolation vs Frequency

Forcing a page break between ImageMatrices

TPS2549 Eye_Diag1_SLUSCE3.gif
Figure 18. Eye Diagram Using USB Compliance Test Pattern, Bypassing the TPS2549 Data Switch
TPS2549 TurnonResp_SLUSCE3.gif
R(LOAD) = 5 Ω C(LOAD) = 150 µF t = 1 ms/div
Figure 20. Turnon Response
TPS2549 EnInShort_SLUSCE3.gif
R(ILIM_HI) = 80.6 kΩ t = 2 ms/div
Figure 22. Enable Into Short
TPS2549 ShCirc-FLRecov_SLUSCE3.gif
R(ILIM_HI) = 19.1 kΩ t = 4 ms/div
Figure 24. Short-Circuit to Full-Load Recovery
TPS2549 HotShort_SLUSCE3.gif
R(ILIM_HI) = 19.1 kΩ R(SHORT) = 50 mΩ t = 1 ms/div
Figure 26. Hot Short
TPS2549 LoadDetReset_SLUSCE3.gif
R(ILIM_LO) = 80.6 kΩ t = 1 s/div
Figure 28. Load Detection Reset Time
TPS2549 ShVBUS_SLUSCE3.gif
R(DM_OUT) = 15 kΩ t = 4 ms/div
Figure 30. DM_IN Short to VBUS
TPS2549 Eye_Diag2_SLUSCE3.gif
Figure 19. Eye Diagram Using USB Compliance Test Pattern, Through the TPS2549 Data Switch
TPS2549 TurnoffResp_SLUSCE3.gif
R(LOAD) = 5 Ω C(LOAD) = 150 µF t = 1 ms/div
Figure 21. Turnoff Response
TPS2549 EnInShort-TC_SLUSCE3.gif
R(ILIM_HI) = 19.1 kΩ t = 4 ms/div
Figure 23. Enable Into Short – Thermal Cycling
TPS2549 HotShResp_SLUSCE3.gif
R(SHORT) = 50 mΩ t = 1 µs/div
Figure 25. Hot-Short Response Time
TPS2549 LoadDetSet_SLUSCE3.gif
R(ILIM_LO) = 80.6 kΩ t = 100 ms/div
Figure 27. Load-Detection Set Time
TPS2549 ShVBUSresp_SLUSCE3.gif
R(DM_OUT) = 15 kΩ t = 1 µs/div
Figure 29. DM_IN Short to VBUS Response Time
TPS2549 ShVBUSrecov_SLUSCE3.gif
R(DM_OUT) = 15 kΩ t = 1 µs/div
Figure 31. DM_IN Short-to-VBUS Recovery