SBVS426B December   2022  – October 2024 TPS25772-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Recommended Components
    5. 6.5  Thermal Information
    6. 6.6  Buck-Boost Regulator
    7. 6.7  CC Cable Detection Parameters
    8. 6.8  CC VCONN Parameters
    9. 6.9  CC PHY Parameters
    10. 6.10 Thermal Shutdown Characteristics
    11. 6.11 Oscillator Characteristics
    12. 6.12 ADC Characteristics
    13. 6.13 TVSP Parameters
    14. 6.14 Input/Output (I/O) Characteristics
    15. 6.15 BC1.2 Characteristics
    16. 6.16 I2C Requirements and Characteristics
    17. 6.17 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Device Power Management and Supervisory Circuitry
        1. 8.3.1.1 VIN UVLO and Enable/UVLO
        2. 8.3.1.2 Internal LDO Regulators
      2. 8.3.2  TVSP Device Configuration and ESD Protection
      3. 8.3.3  Buck-Boost Regulator
        1. 8.3.3.1  Buck-Boost Regulator Operation
        2. 8.3.3.2  Switching Frequency, Frequency Dither, Phase-Shift and Synchronization
        3. 8.3.3.3  VIN Supply and VIN Over-Voltage Protection
        4. 8.3.3.4  Feedback Paths and Error Amplifiers
        5. 8.3.3.5  Transconductors and Compensation
        6. 8.3.3.6  Output Voltage DAC, Soft-Start and Cable Droop Compensation
        7. 8.3.3.7  VBUS Overvoltage Protection
        8. 8.3.3.8  VBUS Undervoltage Protection
        9. 8.3.3.9  Current Sense Resistor (RSNS) and Current Limit Operation
        10. 8.3.3.10 Buck-Boost Peak Current Limits
      4. 8.3.4  USB-PD Physical Layer
        1. 8.3.4.1 USB-PD Encoding and Signaling
        2. 8.3.4.2 USB-PD Bi-Phase Marked Coding
        3. 8.3.4.3 USB-PD Transmit (TX) and Receive (Rx) Masks
        4. 8.3.4.4 USB-PD BMC Transmitter
        5. 8.3.4.5 USB-PD BMC Receiver
        6. 8.3.4.6 Squelch Receiver
      5. 8.3.5  VCONN
      6. 8.3.6  Cable Plug and Orientation Detection
        1. 8.3.6.1 Configured as a Source
        2. 8.3.6.2 Configured as a Sink
        3. 8.3.6.3 Overvoltage Protection (Px_CC1, Px_CC2)
      7. 8.3.7  ADC
        1. 8.3.7.1 ADC Divider Ratios
      8. 8.3.8  BC 1.2, Legacy and Fast Charging Modes (Px_DP, Px_DM)
      9. 8.3.9  USB2.0 Low-Speed Endpoint
      10. 8.3.10 Digital Interfaces
        1. 8.3.10.1 General GPIO
        2. 8.3.10.2 I2C Buffer
      11. 8.3.11 I2C Interface
        1. 8.3.11.1 I2C Interface Description
        2. 8.3.11.2 I2C Clock Stretching
        3. 8.3.11.3 I2C Address Setting
        4. 8.3.11.4 Unique Address Interface
        5. 8.3.11.5 I2C Pullup Resistor Calculation
      12. 8.3.12 Digital Core
        1. 8.3.12.1 Device Memory
        2. 8.3.12.2 Core Microprocessor
      13. 8.3.13 NTC Input
      14. 8.3.14 Thermal Sensors and Thermal Shutdown
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Application GUI Selections
        2. 9.2.2.2 EEPROM Selection
        3. 9.2.2.3 EN/UVLO
        4. 9.2.2.4 Sense Resistor, RSNS, RCSP, RCSN and CFILT
        5. 9.2.2.5 Inductor Currents
        6. 9.2.2.6 Output Capacitor
        7. 9.2.2.7 Input Capacitor
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1.     103

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RQL|29
Thermal pad, mechanical data (Package|Pins)
Orderable Information

VIN Supply and VIN Over-Voltage Protection

VIN Supply

The voltage VIN at the input supply pin IN, measured with respect to AGND, must meet the following requirements:

  • Overvoltage: The voltage VIN must never exceed an absolute maximum of 40 V, and cannot exceed 36 V under anticipated operating conditions. Automotive applications typically require an external transient suppressor to meet this requirement.
  • Load dump: When the converter is running and VIN exceeds 18 V, the positive slew rate dVIN/dt must not exceed 200 V/ms.
  • Double battery: When the converter is not running, the positive slew rate dVIN/dt must not exceed 10 V/µs. The input EMI filter can help mitigate input voltage slew rates.
  • Reverse battery: The voltage VIN must never go below –0.3 V. Automotive applications typically require external reverse voltage blocking circuitry.

The buck-boost switching converter is capable of delivering its full rated output power of 65 W over an input supply range 6.8 V < VIN < 18 V . The input voltage can dip down to the UVLO threshold providing that the output power level is appropriately derated.

VIN Overvoltage Protection Circuitry

The TPS25772-Q1 contains circuitry that protects the power train against load dump and double battery conditions. When VIN exceeds approximately 19 V, a comparator determines that an input overvoltage condition has occurred. This comparator sends a signal that shuts the switching converter down. Transistors M1, M2, and M3 in Buck-Boost Internal Power FETs are turned off, and transistor M4 is turned on. However, current is still flowing through the inductor. Two cases may exist: the current may flow forward (from SW1 to SW2) or in reverse (from SW2 to SW1). Reverse current flow will forward-bias the body diode of M1. The voltage across the inductor then equals the sum of the forward voltage of this diode plus the input voltage, which is sufficient to cause the inductor voltage to rapidly ramp down to zero. Forward current flow will forward-bias the body diode of M2. After the inductor current is released, a small linear regulator biases SW1 to approximately 15 V. When the overvoltage condition is removed, the switching regulator may resume operation.