SLVSGG6B april   2022  – june 2023 TPS25981

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Switching Characteristics
      1.      16
    8. 7.8 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Undervoltage Lockout (UVLO and UVP)
      2. 8.3.2 Overvoltage Lockout (OVLO)
      3. 8.3.3 Inrush Current, Overcurrent, and Short-Circuit Protection
        1. 8.3.3.1 Slew Rate (dVdt) and Inrush Current Control
        2. 8.3.3.2 Circuit-Breaker During Steady-State
        3. 8.3.3.3 Active Current Limiting During Start-Up
        4. 8.3.3.4 Short-Circuit Protection
      4. 8.3.4 Analog Load Current Monitor
      5. 8.3.5 Overtemperature Protection (OTP)
      6. 8.3.6 Fault Response and Indication (FLT)
      7. 8.3.7 Power Good Indication (PG)
      8. 8.3.8 Quick Output Discharge (QOD)
      9. 8.3.9 Reverse Current Blocking FET Driver
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Single Device, Self-Controlled
      2. 9.1.2 Parallel Operation
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Device Selection
        2. 9.2.2.2 Setting Output Voltage Rise Time (tR)
        3. 9.2.2.3 Setting Overcurrent Threshold (ILIM)
        4. 9.2.2.4 Setting Overcurrent Blanking Interval (tITIMER)
        5. 9.2.2.5 Voltage Drop
      3. 9.2.3 Application Curves
  11. 10Power Supply Recommendations
    1. 10.1 Transient Protection
    2. 10.2 Output Short-Circuit Measurements
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The TPS25981xx is an eFuse with integrated power path that is used to ensure safe power delivery in a system. The device starts its operation by monitoring the IN bus. When the input supply voltage (VIN) exceeds the Undervoltage Protection threshold (VUVP), the device samples the EN/UVLO pin. A high level (> VUVLO) on this pin enables the internal power path to start conducting and allow current to flow from IN to OUT. When EN/UVLO is held low (< VUVLO), the internal power path is turned off.

After a successful start-up sequence, the device now actively monitors its load current and input voltage, and controls the internal FET to ensure that the user adjustable overcurrent protection threshold (ILIM) is not exceeded and overvoltage spikes are cut-off after they cross the user adjustable overvoltage lockout threshold (VOVLO). The device also provides fast protection against severe overcurrent during short-circuit events. This feature keeps the system safe from harmful levels of voltage and current. At the same time, a user adjustable overcurrent blanking timer allows the system to pass moderate transient peaks in the load current profile without tripping the eFuse. This feature ensures a robust protection solution against real faults which is also immune to transients, thereby ensuring maximum system uptime.

The device also has a built-in thermal sensor based shutdown mechanism to protect itself in case the device temperature (TJ) exceeds the recommended operating conditions.