SLVSHH5B August   2023  – December 2024 TPS25983

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Undervoltage Protection (UVLO and UVP)
      2. 7.3.2 Overvoltage Protection (OVP)
      3. 7.3.3 Inrush Current, Overcurrent, and Short-Circuit Protection
        1. 7.3.3.1 Slew Rate and Inrush Current Control (dVdt)
        2. 7.3.3.2 Circuit Breaker
        3. 7.3.3.3 Active Current Limiting
        4. 7.3.3.4 Short-Circuit Protection
      4. 7.3.4 Overtemperature Protection (OTP)
      5. 7.3.5 Analog Load Current Monitor (IMON)
      6. 7.3.6 Power Good (PG)
      7. 7.3.7 Reverse Current Blocking FET Driver
      8. 7.3.8 Fault Response
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application: Standby Power Rail Protection in Datacenter Servers
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Device Selection
        2. 8.2.2.2 Setting the Current Limit Threshold: RILIM Selection
        3. 8.2.2.3 Setting the Undervoltage and Overvoltage Lockout Set Point
        4. 8.2.2.4 Choosing the Current Monitoring Resistor: RIMON
        5. 8.2.2.5 Setting the Output Voltage Ramp Time (TdVdt)
          1. 8.2.2.5.1 Case 1: Start-Up Without Load: Only Output Capacitance COUT Draws Current
          2. 8.2.2.5.2 Case 2: Start-Up With Load: Output Capacitance COUT and Load Draw Current
        6. 8.2.2.6 Setting the Transient Overcurrent Blanking Interval (tITIMER)
        7. 8.2.2.7 Setting the Auto-Retry Delay and Number of Retries
      3. 8.2.3 Application Curves
    3. 8.3 System Examples
      1. 8.3.1 Optical Module Power Rail Path Protection
        1. 8.3.1.1 Design Requirements
        2. 8.3.1.2 Device Selection
        3. 8.3.1.3 External Component Settings
        4. 8.3.1.4 Voltage Drop
        5. 8.3.1.5 Application Curves
      2. 8.3.2 Input Protection for 12-V Rail Applications: PCIe Cards, Storage Interfaces, and DC Fans
      3. 8.3.3 Priority Power MUXing
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Transient Protection
      2. 8.4.2 Output Short-Circuit Measurements
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Application Information

The TPS25983 device is an integrated 20-A eFuse that is typically used for hot-swap and power rail protection applications. The device operates from 2.7 V to 26 V with adjustable overcurrent and undervoltage protection. This device also provides configurable overvoltage protection. The device aids in controlling the inrush current and has the flexibility to configure the number of auto-retries and retry delay. The adjustable overcurrent blanking timer provides the functionality to allow transient overcurrent pulses without limiting or tripping. These devices protect source, load and internal MOSFET from potentially damaging events in systems such as server standby rails, PCIe cards, SSDs, HDDs, optical modules, routers and switches.

The following design procedure can be used to select the supporting component values based on the application requirement. Additionally, a spreadsheet design tool TPS25983xx Design Calculator is available in the web product folder.