SBVS264B January   2017  – September 2021 TPS3850-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Timing Diagrams
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 CRST
      2. 7.3.2 RESET
      3. 7.3.3 Over- and Undervoltage Fault Detection
      4. 7.3.4 Adjustable Operation Using the TPS3850H01Q1
      5. 7.3.5 Window Watchdog
        1. 7.3.5.1 SET0 and SET1
          1. 7.3.5.1.1 Enabling the Window Watchdog
          2. 7.3.5.1.2 Disabling the Watchdog Timer When Using the CRST Capacitor
          3. 7.3.5.1.3 SET0 and SET1 During Normal Watchdog Operation
      6. 7.3.6 Window Watchdog Timer
        1. 7.3.6.1 CWD
        2. 7.3.6.2 WDI Functionality
        3. 7.3.6.3 WDO Functionality
    4. 7.4 Device Functional Modes
      1. 7.4.1 VDD is Below VPOR ( VDD < VPOR)
      2. 7.4.2 Above Power-On-Reset But Less Than UVLO (VPOR ≤ VDD < VUVLO)
      3. 7.4.3 Above UVLO But Less Than VDD (min) (VUVLO ≤ VDD < VDD (min))
      4. 7.4.4 Normal Operation (VDD ≥ VDD (min))
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 CRST Delay
        1. 8.1.1.1 Factory-Programmed Reset Delay Timing
        2. 8.1.1.2 Programmable Reset Delay Timing
      2. 8.1.2 CWD Functionality
        1. 8.1.2.1 Factory-Programmed Timing Options
        2. 8.1.2.2 Adjustable Capacitor Timing
        3. 8.1.2.3 45
      3. 8.1.3 Adjustable SENSE Configuration
      4. 8.1.4 Overdrive on the SENSE Pin
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1: Monitoring a 1.2-V Rail with Factory-Programmable Watchdog Timing
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Monitoring the 1.2-V Rail
          2. 8.2.1.2.2 Meeting the Minimum Reset Delay
          3. 8.2.1.2.3 Setting the Watchdog Window
          4. 8.2.1.2.4 Calculating the RESET and WDO Pullup Resistor
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Design 2: Using the TPS3850H01Q1 to Monitor a 0.7-V Rail With an Adjustable Window Watchdog Timing
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Meeting the Minimum Reset Delay
          2. 8.2.2.2.2 Setting the Window Watchdog
          3. 8.2.2.2.3 Watchdog Disabled During the Initialization Period
          4. 8.2.2.2.4 Calculating the Sense Resistor
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Evaluation Module
      2. 11.1.2 Device Nomenclature
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DRC|10
Thermal pad, mechanical data (Package|Pins)
Orderable Information
SET0 and SET1 During Normal Watchdog Operation

The SET0 and SET1 pins can be used to control the window watchdog ratio of the lower boundary to the upper boundary. There are four possible modes for the watchdog (see Table 8-5): disabled, 1:8 ratio, 3:4 ratio, and 1:2 ratio. If SET0 = 1 and SET1 = 0, then the watchdog is disabled. When the watchdog is disabled, WDO does not assert and the TPS3850-Q1 functions as a normal supervisor. The SET0 and SET1 pins can be changed when the device is operational, but cannot be changed at the same time. If these pins are changed when the device is operational, then there must be a 500-µs (tSET) delay between switching the two pins. If SET0 and SET1 are used to change the reset timing, then a reset event must occur before the new timing condition is latched. This reset can be triggered by SENSE rising above VIT+(OV) or below VIT-(UV), or by bringing VDD below VUVLO. Figure 7-7 shows how the SET0 and SET1 pins do not change the watchdog timing option until a reset event has occurred.

GUID-33CB7AEE-6E74-4714-8BBF-B9B081A919A9-low.gifFigure 7-7 Changing SET0 and SET1 Pins