SLUS660I September   2005  – January 2015 TPS40140

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Clock Master and Clock Slave
      2. 8.3.2 Voltage Master and Voltage Slave
      3. 8.3.3 Power Good
      4. 8.3.4 Power-On Reset (POR)
      5. 8.3.5 Overcurrent
      6. 8.3.6 Output Undervoltage Protection
      7. 8.3.7 Output Overvoltage Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Protection and Fault Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1  Synchronizing a Single Controller to an External Clock
      2. 9.1.2  Split Input Voltage Operation
      3. 9.1.3  Configuring Single and Multiple ICs
        1. 9.1.3.1 Single Device Operation
        2. 9.1.3.2 Multiple Devices
        3. 9.1.3.3 Clock Master, PHSEL, and CLKIO Configurations
          1. 9.1.3.3.1 One Device Operation
          2. 9.1.3.3.2 Two ICs Operation
          3. 9.1.3.3.3 Three ICs Operation
          4. 9.1.3.3.4 Four ICs Operation
          5. 9.1.3.3.5 Six ICs Operation
          6. 9.1.3.3.6 Eight ICs Operation
      4. 9.1.4  Digital Clock Synchronization
        1. 9.1.4.1 Basic Configurations for 2, 4, 6, 8, 12, or 16 Phases
        2. 9.1.4.2 Configuring for Other Number of Phases
      5. 9.1.5  Typical Start-Up Sequence
      6. 9.1.6  Track (Soft-Start Without PreBiased Output)
      7. 9.1.7  Soft-Start With PreBiased Outputs
      8. 9.1.8  Track Function in Configuring a Slave Channel
      9. 9.1.9  Differential Amplifier, U9
      10. 9.1.10 Setting the Output Voltage
      11. 9.1.11 Programmable Input UVLO Protection
      12. 9.1.12 CLKFLT, CLKIO Pin Fault
      13. 9.1.13 PHSEL Pin Fault
      14. 9.1.14 Overtemperature
      15. 9.1.15 Fault Masking Operation
      16. 9.1.16 Setting the Switching Frequency
      17. 9.1.17 Current Sense
      18. 9.1.18 Current Sensing and Balancing
      19. 9.1.19 Overcurrent Detection and Hiccup Mode
      20. 9.1.20 Calculating Overcurrent Protection Level
      21. 9.1.21 Design Examples Information
        1. 9.1.21.1 Inductor DCR Current Sense
    2. 9.2 Typical Application
      1. 9.2.1 Application 1: Dual-Output Configuration from 12 to 3.3 V and 1.5 V DC-DC Converter Using a TPS40140
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Step 1: Inductor Selection
          2. 9.2.1.2.2 Step 2: Output Capacitor Selection
          3. 9.2.1.2.3 Step 3: Input Capacitor Selection
          4. 9.2.1.2.4 Step 4: MOSFET Selection
          5. 9.2.1.2.5 Step 5: Peripheral Component Design
            1. 9.2.1.2.5.1  Switching Frequency Setting (RT Pin 5)
            2. 9.2.1.2.5.2  Output Voltage Setting (FB1 Pin 36)
            3. 9.2.1.2.5.3  Current Sensing Network Design (CS1 Pin 31 and CSRT1 Pin 32)
            4. 9.2.1.2.5.4  Overcurrent Protection (ILIM1 Pin 34)
            5. 9.2.1.2.5.5  VREG (Pin 21)
            6. 9.2.1.2.5.6  BP5 (Pin 8)
            7. 9.2.1.2.5.7  PHSEL (Pin 4)
            8. 9.2.1.2.5.8  VSHARE (Pin 6)
            9. 9.2.1.2.5.9  PGOOD1 (Pin 30)
            10. 9.2.1.2.5.10 UVLO_CE1 (Pin 29)
            11. 9.2.1.2.5.11 Clkio (Pin 28)
            12. 9.2.1.2.5.12 BOOT1 and SW1 (Pin 27 and 25)
            13. 9.2.1.2.5.13 TRK1 (Pin 33)
            14. 9.2.1.2.5.14 DIFFO, VOUT, and GSNS (Pin 1, Pin 2, and Pin 3)
          6. 9.2.1.2.6 Feedback Compensator Design (COMP1 Pin 35)
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Application 2: Two-Phase Single Output Configuration from 12 to 1.5 V DC-DC Converter Using a TPS40140
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Step 1: Output Capacitor Selection
          2. 9.2.2.2.2 Step 2: Input Capacitor Selection
          3. 9.2.2.2.3 Step 3: Peripheral Component Design
            1. 9.2.2.2.3.1 Switching Frequency Setting (Rt Pin 5)
            2. 9.2.2.2.3.2 COMP1 and COMP2 (Pin 35 and Pin 10)
            3. 9.2.2.2.3.3 TRK1 and TRK2 (Pin 33 and Pin 12)
            4. 9.2.2.2.3.4 ILIM1 and ILIM2 (Pin 34 and Pin 11)
            5. 9.2.2.2.3.5 FB1 and FB2 (Pin 36 and Pin 9)
            6. 9.2.2.2.3.6 PHSEL (Pin 4)
            7. 9.2.2.2.3.7 PGOOD1 and PGOOD2 (Pin 30 and Pin 15)
            8. 9.2.2.2.3.8 CLKIO (Pin 28)
            9. 9.2.2.2.3.9 DIFFO, VOUT, and GSNS (Pin 1, Pin 2, and Pin 3)
      3. 9.2.3 Application Curves
    3. 9.3 System Example
      1. 9.3.1 Four-Phase Single Output Configuration from 12 to 1.8 V DC-DC Converter Using Two TPS40140
        1. 9.3.1.1 Step 1: Output Capacitor Selection
        2. 9.3.1.2 Step 2: Input Capacitor Selection
        3. 9.3.1.3 Step 3: Peripheral Component Design
          1. 9.3.1.3.1 Master Module
            1. 9.3.1.3.1.1 Rt (Pin 5)
            2. 9.3.1.3.1.2 COMP1 and COMP2 (Pin 35 and Pin 10)
            3. 9.3.1.3.1.3 TRK1 and TRK2 (Pin 33 and Pin 12)
            4. 9.3.1.3.1.4 ILIM1 and ILIM2 (Pin 34 and Pin 11)
            5. 9.3.1.3.1.5 FB1 and FB2 (Pin 36 and Pin 9)
            6. 9.3.1.3.1.6 PHSEL (Pin 4)
            7. 9.3.1.3.1.7 PGOOD1 and PGOOD2 (Pin 30 and Pin 15)
            8. 9.3.1.3.1.8 CLKIO (Pin 28)
          2. 9.3.1.3.2 Slave Module:
            1. 9.3.1.3.2.1 RT (Pin 5)
            2. 9.3.1.3.2.2 COMP1 and COMP2 (Pin 35 and Pin 10)
            3. 9.3.1.3.2.3 TRK1 and TRK2 (Pin 33 and Pin 12)
            4. 9.3.1.3.2.4 ILIM1 and ILIM2 ( Pin 34 and Pin 11)
            5. 9.3.1.3.2.5 FB1 and FB2 (Pin 36 and Pin 9)
            6. 9.3.1.3.2.6 PHSEL (Pin 4)
            7. 9.3.1.3.2.7 PGOOD1 and PGOOD2 (Pin 30 and Pin 15)
            8. 9.3.1.3.2.8 CLKIO (Pin 28)
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Power Stage
      2. 11.1.2 Device Peripheral
      3. 11.1.3 PowerPAD Layout
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

12 Device and Documentation Support

12.1 Device Support

Table 9. Definition of Symbols

PARAMETER DESCRIPTION
VIN(min) Minimum operating input voltage
VIN(max) Maximum operating input voltage
VOUT Output voltage
IRIPPLE Inductor peak-peak ripple current
ITRAN(MAX) Maximum load transient
VUNDER Output voltage undershot
VOVER Output voltage overshot
VRIPPLE(TotOUT) Total output ripple
VRIPPLE(COUT) Output voltage ripple due to output capacitance
VRIPPLE(CIN) Input voltage ripple due to input capacitance
VRIPPLE(CinESR) Input voltage ripple due to the ESR of input capacitance
Pswcond High-side MOSFET conduction loss
Iswrms RMS current in the high-side MOSFET
Rdson(sw) ON drain-source resistance of the high-side MOSFET
Pswsw High-side MOSFET switching loss
Ipk Peak current through the high-side MOSFET
Rdrv Driver resistance of the high-side MOSFET
Qgdsw Gate to drain charge of the high-side MOSFET
Qgssw Gate to source charge of the high-side MOSFET
Vgsw Gate drive voltage of the high-side MOSFET
Pswgate Gate drive loss of the high-side MOSFET
Qgsw Gate charge of the high-side MOSFET
Pswtot Total losses of the high-side MOSFET
Psrcond Low-side MOSFET conduction loss
Isrrms RMS current in the low-side MOSFET
Rdson(sr) ON drain-source resistance of the low-side MOSFET
Psrgate Gate drive loss of the low-side MOSFET
Qgsr Gate charge of the low-side MOSFET
Vgsr Gate drive voltage of the low-side MOSFET
Pdiode Power loss in the diode
td Dead time between the conduction of high- and low-side MOSFET
Vf Forward voltage drop of the body diode of the low-side MOSFET
Psrtot Total losses of the low-side MOSFET
DCR Inductor DC resistance
Ac The gain of the current sensing amplifier, typically 13
ROUT Output load resistance
Vramp Ramp amplitude, typically 0.5 V
T Switching period
Gvc(s) Control to output transfer function
Gc(s) Compensator transfer function
Tv(s) Loop gain transfer function
Acm Gain of the compensator
fp The pole frequency of the compensator
fz The zero frequency of the compensator

12.2 Documentation Support

12.2.1 Related Documentation

These references may be found on the web at www.power.ti.com under Technical Documents. Many design tools and links to additional references, including design software, may also be found at www.power.ti.com

  1. Under The Hood of Low Voltage DC/DC Converters, SEM1500 Topic 5, 2002 Seminar Series
  2. Understanding Buck Power Stages in Switchmode Power Supplies (SLVA057) March 1999
  3. Design and Application Guide for High Speed MOSFET Gate Drive Circuits, SEM 1400, 2001 Seminar Series
  4. Designing Stable Control Loops, SEM 1400, 2001 Seminar Series
  5. Additional PowerPAD information may be found in Applications Briefs (SLMA002) and (SLMA004)
  6. QFN/SON PCB Attachment, Texas Instruments (SLUA271), June 2002

12.3 Trademarks

PowerPAD is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

esds-image

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.