SLUS772G March   2008  – June 2020 TPS40210 , TPS40211

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Soft Start
      2. 7.3.2  BP Regulator
      3. 7.3.3  Shutdown (DIS/ EN Pin)
      4. 7.3.4  Minimum On-Time and Off-Time Considerations
      5. 7.3.5  Setting the Oscillator Frequency
      6. 7.3.6  Synchronizing the Oscillator
      7. 7.3.7  Current Sense and Overcurrent
      8. 7.3.8  Current Sense and Subharmonic Instability
      9. 7.3.9  Current Sense Filtering
      10. 7.3.10 Control Loop Considerations
      11. 7.3.11 Gate Drive Circuit
      12. 7.3.12 TPS40211
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operation Near Minimum Input Voltage
      2. 7.4.2 Operation With DIS/ EN Pin
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 12-V to 24-V Nonsynchronous Boost Regulator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1  Custom Design with WEBENCH Tools
          2. 8.2.1.2.2  Duty Cycle Estimation
          3. 8.2.1.2.3  Inductor Selection
          4. 8.2.1.2.4  Rectifier Diode Selection
          5. 8.2.1.2.5  Output Capacitor Selection
          6. 8.2.1.2.6  Input Capacitor Selection
          7. 8.2.1.2.7  Current Sense and Current Limit
          8. 8.2.1.2.8  Current Sense Filter
          9. 8.2.1.2.9  Switching MOSFET Selection
          10. 8.2.1.2.10 Feedback Divider Resistors
          11. 8.2.1.2.11 Error Amplifier Compensation
          12. 8.2.1.2.12 RC Oscillator
          13. 8.2.1.2.13 Soft-Start Capacitor
          14. 8.2.1.2.14 Regulator Bypass
          15. 8.2.1.2.15 Bill of Materials
        3. 8.2.1.3 Application Curves
      2. 8.2.2 12-V Input, 700-mA LED Driver, Up to 35-V LED String
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2.      65
      3. 11.1.2 Related Devices
      4. 11.1.3 Development Support
        1. 11.1.3.1 Custom Design with WEBENCH Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Support Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1.     78

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DRC|10
  • DGQ|10
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Setting the Oscillator Frequency

The oscillator frequency is determined by a resistor and capacitor connected to the RC pin of the TPS40210. The capacitor is charged to a level of approximately VDD/20 by current flowing through the resistor and is then discharged by a transistor internal to the TPS40210. The required resistor for a given oscillator frequency is found from either Figure 6-1 or Equation 14.

Equation 14. GUID-3A9DC3F1-2394-48D9-98CA-3954AC612FAA-low.gif

where

  • RT is the timing resistance in kΩ
  • fSW is the switching frequency in kHz
  • CT is the timing capacitance in pF

For most applications, a capacitor in the range of 68 pF to 120 pF gives the best results. Resistor values should be limited to between 100 kΩ and 1 MΩ as well. If the resistor value falls below 100 kΩ, decrease the capacitor size and recalculate the resistor value for the desired frequency. As the capacitor size decreases below 47 pF, the accuracy of Equation 14 degrades and empirical means can be needed to fine tune the timing component values to achieve the desired switching frequency.