SLVSC16B August   2013  – July 2016 TPS43330A-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 DC Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Boost Controller
      2. 7.3.2 Gate-Driver Supply (VREG, EXTSUP)
      3. 7.3.3 External P-Channel Drive (GC2) and Reverse Battery Protection
      4. 7.3.4 Undervoltage Lockout and Overvoltage Protection
      5. 7.3.5 Thermal Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Buck Controllers: Normal Mode PWM Operation
        1. 7.4.1.1 Frequency Selection and External Synchronization
        2. 7.4.1.2 Enable Inputs
        3. 7.4.1.3 Feedback Inputs
        4. 7.4.1.4 Soft-Start Inputs
        5. 7.4.1.5 Current-Mode Operation
        6. 7.4.1.6 Current Sensing and Current Limit With Foldback
        7. 7.4.1.7 Slope Compensation
        8. 7.4.1.8 Power-Good Outputs and Filter Delays
        9. 7.4.1.9 Light-Load PFM Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Boost Component Selection
        2. 8.2.2.2  Boost Maximum Input Current IIN_MAX
        3. 8.2.2.3  Boost Inductor Selection, L
        4. 8.2.2.4  Inductor Ripple Current, IRIPPLE
        5. 8.2.2.5  Peak Current in Low-Side FET, IPEAK
        6. 8.2.2.6  Right Half-Plane Zero RHP Frequency, fRHP
        7. 8.2.2.7  Output Capacitor, COUTx
        8. 8.2.2.8  Bandwidth of Boost Converter, fC
        9. 8.2.2.9  Output Ripple Voltage Due to Load Transients, ∆VOUTx
        10. 8.2.2.10 Selection of Components for Type II Compensation
        11. 8.2.2.11 Input Capacitor, CIN
        12. 8.2.2.12 Output Schottky Diode D1 Selection
        13. 8.2.2.13 Low-Side MOSFET (BOT_SW3)
        14. 8.2.2.14 BuckA Component Selection
          1. 8.2.2.14.1 BuckA Component Selection
          2. 8.2.2.14.2 Current-Sense Resistor RSENSE
        15. 8.2.2.15 Inductor Selection L
        16. 8.2.2.16 Inductor Ripple Current IRIPPLE
        17. 8.2.2.17 Output Capacitor COUTA
        18. 8.2.2.18 Bandwidth of Buck Converter fC
        19. 8.2.2.19 Selection of Components for Type II Compensation
        20. 8.2.2.20 Resistor Divider Selection for Setting VOUTA Voltage
        21. 8.2.2.21 BuckB Component Selection
        22. 8.2.2.22 Resistor Divider Selection for Setting VOUT Voltage
        23. 8.2.2.23 BuckX High-Side and Low-Side N-Channel MOSFETs
      3. 8.2.3 Application Curves
    3. 8.3 System Examples
      1. 8.3.1 Example 1
      2. 8.3.2 Example 2
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Boost Converter
      2. 10.1.2 Buck Converter
      3. 10.1.3 Other Considerations
    2. 10.2 Layout Example
    3. 10.3 Power Dissipation Derating Profile, 38-Pin HTTSOP PowerPAD Package
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings(1)

MIN MAX UNIT
Voltage Input voltage: VIN, VBAT –0.3 60 V
Voltage
(buck function:
BuckA and BuckB)
Ground: PGNDA–AGND, PGNDB–AGND –0.3 0.3 V
Enable inputs: ENA, ENB –0.3 60
Bootstrap inputs: CBA, CBB –0.3 68
Bootstrap inputs: CBA–PHA, CBB–PHB –0.3 8.8
Phase inputs: PHA, PHB –0.7 60
Phase inputs: PHA, PHB (for 150 ns) –1 60
Feedback inputs: FBA, FBB –0.3 13
Error-amplifier outputs: COMPA, COMPB –0.3 13
High-side MOSFET drivers: GA1-PHA, GB1-PHB –0.3 8.8
Low-side MOSFET drivers: GA2–PGNDA, GB2–PGNDB –0.3 8.8
Current-sense voltage: SA1, SA2, SB1, SB2 –0.3 13
Soft start: SSA, SSB –0.3 13
Power-good outputs: PGA, PGB –0.3 13
Power-good delay: DLYAB –0.3 13
Switching-frequency timing resistor: RT –0.3 13
SYNC, EXTSUP –0.3 13
Voltage
(boost function)
Low-side MOSFET driver: GC1–PGNDA –0.3 8.8 V
Error-amplifier output: COMPC –0.3 13
Enable input: ENC –0.3 13
Current-limit sense: DS –0.3 60
Output-voltage select: DIV –0.3 8.8
Voltage
(PMOS driver)
P-channel MOSFET driver: GC2 –0.3 60 V
P-channel MOSFET driver: VIN-GC2 –0.3 8.8
Voltage (Gate-driver supply) Gate-driver supply: VREG –0.3 8.8 V
Temperature Junction temperature: TJ –40 150 °C
Operating temperature: TA –40 125
Storage temperature: Tstg –55 165
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to AGND, unless otherwise specified.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2000 V
Charged-device model (CDM), per AEC Q100-011 All pins except 1, 19, 20, and 38 ±500
Pins 1, 19, 20, and 38 ±750
Machine model All pins except 15 and 24 ±200
Pins 15 and 24 ±150
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

MIN MAX UNIT
Buck function:
BuckA and BuckB voltage
Input voltage: VIN, VBAT 4 40 V
Enable inputs: ENA, ENB 0 40
Boot inputs: CBA, CBB 4 48
Phase inputs: PHA, PHB –0.6 40
Current-sense voltage: SA1, SA2, SB1, SB2 0 11
Power-good output: PGA, PGB 0 11
SYNC, EXTSUP 0 9
Boost function Enable input: ENC 0 9 V
Voltage sense: DS 40
DIV 0 VREG
Operating temperature: TA –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) TPS4333x-Q1 UNIT
DAP (HTSSOP)
38 PINS
RθJA Junction-to-ambient thermal resistance(2) 27.3 °C/W
RθJCtop Junction-to-case (top) thermal resistance(3) 19.6 °C/W
RθJB Junction-to-board thermal resistance(4) 15.9 °C/W
ψJT Junction-to-top characterization parameter(5) 0.24 °C/W
ψJB Junction-to-board characterization parameter(6) 6.6 °C/W
RθJCbot Junction-to-case (bottom) thermal resistance(7) 1.2 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC- standard test exists, but a close description can be found in the ANSI SEMI standard G30-88
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7)
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88

6.5 DC Electrical Characteristics

VIN = 8 V to 18 V, TJ = –40°C to +150°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT SUPPLY
VBAT Supply voltage Boost controller enabled, after satisfying initial start-up condition 2 40 V
VIN Input voltage required for device on initial start-up 6.5 40 V
Buck regulator operating range after initial start-up 4 40
VIN(UV) Buck undervoltage lockout VIN falling. After a reset, initial start-up conditions may apply.(3) 3.5 3.6 3.8 V
VIN rising. After a reset, initial start-up conditions may apply.(3) 3.8 4
VBOOST_UNLOCK Boost unlock threshold VBAT rising 8.2 8.5 8.8 V
IQ_LPM LPM quiescent current(1) VIN = 13 V, TA = 25°C BuckA: LPM, BuckB: off 30 40 µA
BuckB: LPM, BuckA: off
BuckA, B: LPM, 35 45
VIN = 13 V, TA = 125°C BuckA: LPM, BuckB: off 40 50 µA
BuckB: LPM, BuckA: off
BuckA, B: LPM, 45 55
IQ_NRM Quiescent current:
normal (PWM) mode(1)
SYNC = HIGH, TA = 25°C, VIN = 13 V BuckA: CCM, BuckB: off 4.85 5.3 mA
BuckB: CCM, BuckA: off
BuckA, B: CCM 7 7.6
SYNC = HIGH, TA = 125°C, VIN = 13 V BuckA: CCM, BuckB: off 5 5.5 mA
BuckB: CCM, BuckA: off
BuckA, B: CCM 7.5 8
Ibat_sh Shutdown current BuckA, B: off, VBAT = 13 V TA = 25°C 2.5 4 µA
TA = 125°C 3 5 µA
VINLPMexit VIN level to exit LPM VIN falling 7.7 8 8.3 V
VINLPMentry VIN level to enable entering LPM VIN rising 8.2 8.5 8.8 V
VINLPMhys Hysteresis VIN rising or falling 0.4 0.5 0.6 V
INPUT VOLTAGE VBAT - UNDERVOLTAGE LOCKOUT
VBAT(UV) Boost-input undervoltage VBAT falling. After a reset, initial start-up conditions may apply.(3) 1.8 1.9 2 V
VBAT rising. After a reset, initial start-up conditions may apply.(3) 2.4 2.5 2.6
UVLOHys Hysteresis 500 600 700 mV
UVLOfilter Filter time 5 µs
INPUT VOLTAGE VIN - OVERVOLTAGE LOCKOUT
VOVLO Overvoltage shutdown VIN rising 45 46 47 V
VIN falling 43 44 45
OVLOHys Hysteresis 1 2 3 V
OVLOfilter Filter time 5 µs
BOOST CONTROLLER
Vboost7V Boost VOUT = 7 V DIV = low, VBAT = 2 V to 7 V 6.8 7 7.3 V
Vboost7V-th Boost-enable threshold Boost VOUT = 7 V VBAT falling 7.5 8 8.5 V
Boost-disable threshold VBAT rising 8 8.5 9
Boost hysteresis VBAT rising or falling 0.4 0.5 0.6
Vboost10V Boost VOUT = 10 V DIV = open, VBAT = 2 V to 10 V 9.7 10 10.4 V
Vboost10V-th Boost-enable threshold Boost VOUT = 10 V VBAT falling 10.5 11 11.5 V
Boost-disable threshold VBAT rising 11 11.5 12
Boost hysteresis VBAT rising or falling 0.4 0.5 0.6
Vboost8.85V Boost VOUT = 8.85 V DIV = VREG, VBAT = 2 V to 8.85 V 8.35 8.85 9.35 V
Vboost8.85V-th Boost-enable threshold Boost VOUT = 8.85 V VBAT falling 9.15 9.85 10.45 V
Boost-disable threshold VBAT rising 9.65 10.35 10.85
Boost hysteresis VBAT rising or falling 0.4 0.5 0.6
BOOST-SWITCH CURRENT LIMIT
VDS Current-limit sensing DS input with respect to PGNDA 0.175 0.2 0.225 V
tDS Leading-edge blanking 200 ns
GATE DRIVER FOR BOOST CONTROLLER
IGC1 Peak Gate-driver peak current 1.5 A
rDS(on) Source and sink driver VREG = 5.8 V, IGC1 current = 200 mA 2 Ω
GATE DRIVER FOR PMOS
rDS(on) PMOS OFF 10 20 Ω
IPMOS_ON Gate current VIN = 13.5 V, VGS = –5 V 10 mA
tdelay_ON Turnon delay C = 10 nF 5 10 µs
BOOST-CONTROLLER SWITCHING FREQUENCY
fsw-Boost Boost switching frequency fSW_Buck / 2 kHz
DBoost Boost duty cycle 90%
ERROR AMPLIFIER (OTA) FOR BOOST CONVERTERS
GmBOOST Forward transconductance VBAT = 12 V 0.8 1.35 mS
VBAT = 5 V 0.35 0.65
BUCK CONTROLLERS
VBuckA or VBuckB Adjustable output-voltage range 0.9 11 V
Vref, NRM Internal reference and tolerance voltage in normal mode Measure FBX pin 0.792 0.8 0.808 V
–1% 1%
Vref, LPM Internal reference and tolerance voltage in low-power mode Measure FBX pin 0.784 0.8 0.816 V
–2% 2%
Vsense V sense for forward-current limit in CCM Measured across Sx1 and Sx2, FBx = 0.75 V
(low duty-cycle)
60 75 90 mV
V sense for reverse-current limit in CCM Measured across Sx1 and Sx2, FBx = 1 V –65 –37.5 –23
VI-Foldback V sense for output short Measured across Sx1 and Sx2, FBx = 0 V 17 32.5 48 mV
tdead Shoot-through delay, blanking time 20 ns
DCNRM High-side minimum ON-time 100 ns
Maximum duty cycle (digitally controlled) 98.75%
DCLPM Duty cycle, LPM 80%
ILPM_Entry LPM entry-threshold load current as fraction of maximum set load current 1% .(2)
ILPM_Exit LPM exit-threshold load current as fraction of maximum set load current See(2) 10%
HIGH-SIDE EXTERNAL NMOS GATE DRIVERS FOR BUCK CONTROLLER
IGX1_peak Gate-driver peak current 1.5 A
rDS(on) Source and sink driver VREG = 5.8 V, IGX1 current = 200 mA 2 Ω
LOW-SIDE NMOS GATE DRIVERS FOR BUCK CONTROLLER
IGX2_peak Gate-driver peak current 1.5 A
RDS ON Source and sink driver VREG = 5.8 V, IGX2 current = 200 mA 2 Ω
ERROR AMPLIFIER (OTA) FOR BUCK CONVERTERS
GmBUCK Transconductance COMPA, COMPB = 0.8 V,
source/sink = 5 µA, test in feedback loop
0.72 1 1.35 mS
DIGITAL INPUTS: ENA, ENB, ENC, SYNC
VIH Higher threshold VIN = 13 V 1.7 V
VIL Lower threshold VIN = 13 V 0.7 V
RIH_SYNC Pulldown resistance on SYNC VSYNC = 5 V 500
RIL_ENC Pulldown resistance on ENC VENC = 5 V 500
IIL_ENx Pullup current source on ENA, ENB VENx = 0 V 0.5 2 µA
BOOST OUTPUT VOLTAGE: DIV
VIH_DIV Higher threshold VREG = 5.8 V VREG – 0.2 V
VIL_DIV Lower threshold 0.2 V
Voz_DIV Voltage on DIV if unconnected Voltage on DIV if unconnected VREG / 2 V
INTERNAL GATE-DRIVER SUPPLY
VREG Internal regulated supply VIN = 8 V to 18 V, VEXTSUP = 0 V, SYNC = high 5.5 5.8 6.1 V
Load regulation IVREG = 0 mA to 100 mA, VEXTSUP = 0 V,
SYNC = high
0.2% 1%
VREG(EXTSUP) Internal regulated supply VEXTSUP = 8.5 V 7.2 7.5 7.8 V
Load regulation IEXTSUP = 0 mA to 125 mA, SYNC = High
VEXTSUP = 8.5 V to 13 V
0.2% 1%
VEXTSUP-th EXTSUP switch-over voltage threshold IVREG = 0 mA to 100 mA,
VEXTSUP ramping positive
4.4 4.6 4.8 V
VEXTSUP-Hys EXTSUP switch-over hysteresis 150 250 mV
IVREG-Limit Current limit on VREG VEXTSUP = 0 V, normal mode as well as LPM 100 400 mA
IVREG_EXTSUP-Limit Current limit on VREG when using EXTSUP IVREG = 0 mA to 100 mA,
VEXTSUP = 8.5 V, SYNC = High
125 400 mA
SOFT START
ISSx Soft-start source current VSSA and VSSB = 0 V 40 50 60 µA
OSCILLATOR (RT)
VRT Oscillator reference voltage 1.2 V
POWER GOOD / DELAY
PGth1 Power-good threshold FBx falling –5% –7% –9%
PGhys Hysteresis 2%
PGdrop Voltage drop IPGA = 5 mA 450 mV
IPGA = 1 mA 100
PGleak Power-good leakage VSx2 = VPGx = 13 V 1 µA
tdeglitch Power-good deglitch time 2 16 µs
tdelay Reset delay External capacitor = 1 nF
VBuckX < PGth1
1 ms
tdelay_fix Fixed reset delay No external capacitor, pin open 20 50 µs
IOH Activate current source (current to charge external capacitor) 30 40 50 µA
IIL Activate current sink (current to discharge external capacitor) 30 40 50 µA
OVERTEMPERATURE PROTECTION
Tshutdown Junction-temperature shutdown threshold 150 165 °C
Thys Junction-temperature hysteresis 15 °C
(1) Quiescent current specification is non-switching current consumption without including the current in the external-feedback resistor divider.
(2) The exit threshold specification is to be always higher than the entry threshold.
(3) If VBAT and VREG remain adequate, the buck can continue to operate if VIN is > 3.8 V.

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SWITCHING PARAMETER – BUCK DC-DC CONTROLLERS
fSW_Buck Buck switching frequency RT GND 360 400 440 kHz
60-kΩ external resistor
fSW_adj Buck adjustable range with external resistor RT pin: external resistor 150 600 kHz
fSYNC Buck synchronization range External clock input 150 600 kHz

6.7 Typical Characteristics

TPS43330A-Q1 g_efficiency_across_output_currents_buck_SLVSC16.gif
VIN = 12 V VOUT = 5 V fSW = 400 kHz
L = 4.7 µH RSENSE = 10 mΩ
Figure 1. Efficiency Across Output Currents (Bucks)
TPS43330A-Q1 g_buck_load_step_forced_cont_lvsa82.gif
VIN = 12 V VOUT = 5 V fSW = 400 kHz
L = 4.7 µH RSENSE = 10 mΩ
Figure 3. Buck Load Step: Forced Continuous Mode,
0 to 4 A at 2.5 A/µs
TPS43330A-Q1 g_buck_load_step_low_power_entry_lvsa82.gif
VIN = 12 V VOUT = 5 V fSW = 400 kHz
L = 4.7 µH RSENSE = 10 mΩ
Figure 5. Buck Load Step: Low-Power-Mode Entry,
4 A to 90 mA at 2.5 A/µs
TPS43330A-Q1 g_efficiency_across_output_currents_boost_slvsb48.gif
VIN = 10 V fSW = 200 kHz
L = 1 µH RSENSE = 7.5 mΩ
Figure 7. Efficiency Across Output Currents (Boost)
TPS43330A-Q1 g_cranking_pulse_boost_response_12v_3v_slvsb48.gif
VIN = 10 V BuckA 5 V
at 1.5 A
BuckB = 3.3 V
at 3.5 A
fSW = 200 kHz L = µH,
RSENSE = 7.5 mΩ
CIN = 440 µF,
COUT = 660 µF
Figure 9. Cranking-Pulse Boost Response (12 V to 3 V
in 1 ms at Buck Outputs 7.5 W and 11.5 W)
TPS43330A-Q1 g_inductor_currents_boost_SLVSC16.gif
Figure 11. Inductor Currents (Boost)
TPS43330A-Q1 g_current_limit_vs_compx_voltage_buck_SLVSC16.gif
Figure 13. BUCKx Peak Current Limit vs COMPx Voltage
TPS43330A-Q1 g_foldback_current_limit_buck_SLVSC16.gif
Figure 15. Foldback Current Limit (Buck)
TPS43330A-Q1 g_current_limit_duty_cycle_buck_SLVSC16.gif
Figure 17. Current Limit vs Duty Cycle (Buck)
TPS43330A-Q1 g_inductor_current_buck_SLVSC16.gif
VIN = 12 V VOUT = 5 V fSW = 400 kHz
L = 4.7 µH RSENSE = 10 mΩ
Figure 2. Inductor Currents (Buck)
TPS43330A-Q1 BUCK_LOAD_STEP_FORCED_SLVSC16_inverted.gif
Figure 4. Soft-Start Outputs (Buck)
TPS43330A-Q1 g_buck_load_step_low_power_exit_lvsa82.gif
VIN = 12 V VOUT = 5 V fSW = 400 kHz
L = 4.7 µH RSENSE = 10 mΩ
Figure 6. Buck Load Step: Low-Power-Mode Exit,
90 mA to 4 A at 2.5 A/µs
TPS43330A-Q1 C001_SLVSC16_inverted1_slvsb48.gif
VBAT = 5 V,
VIN = 10 V
fSW = 200 kHz L = 680 nH
RSENSE = 10 mΩ CIN = 440 µF COUT = 660 µF
Figure 8. Load Step Response (Boost)
(0 A to 5 A at 10 A/µs)
TPS43330A-Q1 g_cranking_pulse_boost_response_12v_4v_slvsb48.gif
VIN = 10 V BuckA = 5 V
at 1.5 A
BuckB = 3.3 V
at 3.5 A
fSW = 200 kHz L = 1 µH,
RSENSE = 7.5 mΩ
CIN = 440 µF,
COUT = 660 µF
Figure 10. Cranking-Pulse Boost Response (12 V to 4 V
in 1 ms at Boost Direct Output 25 W)
TPS43330A-Q1 g_no_load_iq_over_temp_misc_SLVSC16.gif
Figure 12. No-Load Quiescent Current vs Temperature
TPS43330A-Q1 g_current_sense_pins_input_current_buck_SLVSC16.gif
Figure 14. Current-Sense Pins Input Current (Buck)
TPS43330A-Q1 g_regulated_fbx_voltage_temp_buck_SLVSC16.gif
Figure 16. Regulated FBx Voltage vs Temperature (Buck)