SLVSH18 December   2024 TPS4HC120-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1.     6
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 SNS Timing Characteristics
    7. 5.7 Switching Characteristics
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Pin Current and Voltage Conventions
      2. 6.3.2 Low Power Mode
      3. 6.3.3 Accurate Current Sense
      4. 6.3.4 Adjustable Current Limit
      5. 6.3.5 Inductive-Load Switching-Off Clamp
      6. 6.3.6 Fault Detection and Reporting
        1. 6.3.6.1 Diagnostic Enable Function
        2. 6.3.6.2 Multiplexing of Current Sense
        3. 6.3.6.3 FAULT Reporting
        4. 6.3.6.4 Fault Table
      7. 6.3.7 Full Diagnostics
        1. 6.3.7.1 Short-to-GND and Overload Detection
        2. 6.3.7.2 Open-Load Detection
          1. 6.3.7.2.1 Channel On
          2. 6.3.7.2.2 Channel Off
        3. 6.3.7.3 Short-to-Battery Detection
        4. 6.3.7.4 Reverse-Polarity and Battery Protection
        5. 6.3.7.5 Thermal Fault Detection
          1. 6.3.7.5.1 Thermal Protection Behavior
      8. 6.3.8 Full Protections
        1. 6.3.8.1 UVLO Protection
        2. 6.3.8.2 Loss of GND Protection
        3. 6.3.8.3 Loss of Power Supply Protection
        4. 6.3.8.4 Reverse Polarity Protection
        5. 6.3.8.5 Protection for MCU I/Os
    4. 6.4 Device Functional Modes
      1. 6.4.1 Working Mode
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curves
    3. 7.3 EMC Transient Disturbances Test
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Examples
        1. 7.5.2.1 Without a GND Network
        2. 7.5.2.2 With a GND Network
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Thermal Protection Behavior

The thermal protection behavior can be split up into three categories of events that can happen. Figure 6-17 shows each of these categories.

  1. Relative thermal shutdown: the device is enabled into an overcurrent event. The output current rises up to the IILIM level and the FLT goes low. With this large amount of current going through the junction temperature of the FET increases rapidly with respect to the controller temperature. When the power FET temperature rises TREL amount above the controller junction temperature ΔT = TFET – TCON > TREL, the device shuts down. After tRETRY, the part tries to restart itself. The FLT is asserted until the fault condition is cleared.
  2. Absolute thermal shutdown: the device is still enabled in an overcurrent event. However, in this case the junction temperature rises up and hits an absolute reference temperature, TABS, and then shuts down. The device does not recover until both TJ < TABS – Thys and the tRETRY timer has expired.
TPS4HC120-Q1 Thermal
                    Behavior Figure 6-17 Thermal Behavior