SLUSC63A November   2015  –  December 2015 TPS53317A

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 PWM Operation
      2. 7.3.2 PWM Frequency and Adaptive On-Time Control
      3. 7.3.3 Light-Load Power Saving Features
      4. 7.3.4 Power Sequences
        1. 7.3.4.1 Non-Tracking Startup
        2. 7.3.4.2 Tracking Startup
      5. 7.3.5 Protection Features
        1. 7.3.5.1 5-V Undervoltage Protection (UVLO)
        2. 7.3.5.2 Power Good Signals
        3. 7.3.5.3 Output Overvoltage Protection (OVP)
        4. 7.3.5.4 Output Undervoltage Protection (UVP)
        5. 7.3.5.5 Overcurrent Protection
          1. 7.3.5.5.1 Overcurrent Limit
          2. 7.3.5.5.2 Negative OCL
      6. 7.3.6 Thermal Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Non-Droop Configuration
      2. 7.4.2 Droop Configuration
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 DDR4 SDRAM Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Step 1. Determine Configuration
          2. 8.2.1.2.2 Step 2. Select Inductor
          3. 8.2.1.2.3 Step 3. Determine Output Capacitance
          4. 8.2.1.2.4 Step 4. Input Capacitance
          5. 8.2.1.2.5 Step 5. Compensation Network
          6. 8.2.1.2.6 Peripheral Component Selection
        3. 8.2.1.3 Application Curves
      2. 8.2.2 DDR3 SDRAM Application
        1. 8.2.2.1 Design Requirements
      3. 8.2.3 Non-Tracking Point-of-Load (POL) Application
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Mounting and Thermal Profile Recommendation
  11. 11Device and Documentation Support
    1. 11.1 Community Resources
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Input voltage range BST (with respect to SW), V5IN, VIN –0.3 7 V
BST –0.3 14
EN –0.3 7
MODE, REFIN –0.3 3.6
VOUT –1 3.6
Output voltage range SW –2 7 V
SW (transient 20 ns and E = 5 µJ) –3
COMP, VREF –0.3 3.6
PGOOD –0.3 7
PGND –0.3 0.3
Operating junction temperature, TJ –40 150 ˚C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 300 ˚C
Storage temperature, Tstg –55 150 ˚C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Input voltage range BST (with respect to SW), EN, VIN –0.1 6.5 V
V5IN 4.5 6.5
BST –0.1 13.5
SW –1.0 6.5
VOUT, MODE, REFIN –0.1 3.5
Output voltage range COMP –0.1 3.5 V
VREF 2
PGOOD –0.1 6.5
PGND –0.1 0.1
Operating temperature range, TA -40 85 °C

6.4 Thermal Information

THERMAL METRIC(1) TPS53317A UNIT
RGB (VQFN)
20 PINS
RθJA Junction-to-ambient thermal resistance 35.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 39.6 °C/W
RθJB Junction-to-board thermal resistance 12.4 °C/W
ψJT Junction-to-top characterization parameter 0.5 °C/W
ψJB Junction-to-board characterization parameter 12.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.7 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended free-air temperature range, VV5IN = 5.0 V, PGND = GND (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY: VOLTAGE, CURRENTS AND 5-V UVLO
IVINSD VIN shutdown current EN = 'LO' 0.02 5 µA
VV5IN V5IN supply voltage V5IN voltage range 4.5 5.0 6.5 V
IV5IN V5IN supply current EN =’HI’, V5IN supply current, fSW = 600 kHz 1.1 2 mA
IV5INSD V5IN shutdown current EN = ‘LO’, V5IN shutdown current 0.2 7.0 µA
VV5UVLO V5IN UVLO Ramp up; EN = 'HI' 4.20 4.37 4.50 V
VV5UVHYS V5IN UVLO hysteresis Falling hysteresis 440 mV
VVREFUVLO REF UVLO(1) Rising edge of VREF, EN = 'HI' 1.8 V
VVREFUVHYS REF UVLO hysteresis(1) 100 mV
VPOR5VFILT Reset OVP latch is reset by V5IN falling below the reset threshold 1.5 2.3 3.1 V
VOLTAGE FEEDBACK LOOP: VREF, VOUT, AND VOLTAGE GM AMPLIFIER
VOUTTOL Output voltage accuracy VREFIN = 1 V, No droop –1% 0% 1%
VREFIN = 0.6 V, No droop –1% 0% 1%
VVREF VREF IVREF = 0 µA 1.98 2.00 2.02 V
IVREF = 50 µA 1.975 2.000 2.025
IREFSNK VREF sink current VVREF = 2.05 V 2.5 mA
gM Transconductance 1.00 mS
VCM Common mode input voltage range(1) 0 2 V
VDM Differential mode input voltage 0 80 mV
ICOMPSNK COMP pin maximum sinking current VCOMP = 2 V, (VREFIN – VOUT) = 80 mV 80 µA
ICOMPSRC COMP pin maximum sourcing current VCOMP = 2 V -80 µA
VOFFSET Input offset voltage TA = 25°C 0 mV
RDSCH Output voltage discharge resistance 42 Ω
f–3dbVL –3dB Frequency(1) 4.5 6.0 7.5 MHz
CURRENT SENSE: CURRENT SENSE AMPLIFIER, OVERCURRENT AND ZERO CROSSING
ACSINT Internal current sense gain Gain from the current of the low-side FET to PWM comparator when PWM = "OFF" 43 53 57 mV/A
IOCL Positive overcurrent limit (valley) 7.6 A
IOCL(neg) Negative overcurrent limit (valley) –9.3 A
VZXOFF Zero crossing comp internal offset 0 mV
PROTECTION: OVP, UVP, PGOOD, and THERMAL SHUTDOWN
VPGDLL PGOOD deassert to lower
(PGOOD → Low)
Measured at the VOUT pin wrt/ VREFIN 84%
VPGHYSHL PGOOD high hysteresis 8%
VPGDLH PGOOD de-assert to higher
(PGOOD → Low)
Measured at the VOUT pin wrt/ VREFIN 116%
VPGHYSHH PGOOD high hysteresis -8%
VINMINPG Minimum VIN voltage for valid PGOOD Measured at the VIN pin with a 2-mA sink current on PGOOD pin. V5IN is grounded here.(3) 0.9 1.3 1.5 V
VOVP OVP threshold Measured at the VOUT pin wrt/ VREFIN, VREFIN = 1 V 117% 120% 123%
VUVP UVP threshold Measured at the VOUT pin wrt/ VREFIN, device latches OFF, begins soft-stop, VREFIN = 1 V 65% 68% 71%
THSD Thermal shutdown(1) Latch off controller, attempt soft-stop. 145 °C
THSD(hys) Thermal Shutdown hysteresis(1) Controller re-starts after temperature has dropped 10 °C
DRIVERS: BOOT STRAP SWITCH
RDSONBST Internal BST switch on-resistance IBST = 10 mA, TA = 25°C 10 Ω
IBSTLK Internal BST switch leakage current VBST = 14 V, VSW = 7 V 1 µA
TIMERS: ON-TIME, MINIMUM OFF-TIME, SS, AND I/O TIMINGS
tONESHOTC PWM one-shot(1) VVIN = 5 V, VVOUT = 1.05 V, fSW = 1 MHz 210 ns
VVIN = 5 V, VVOUT = 1.05 V, fSW = 600 kHz 310
tMIN(off) Minimum OFF time VVIN = 5 V, VVOUT = 1.05 V, fSW = 1 MHz, DRVL on,
SW = PGND, VVOUT < VREFIN
270 ns
tINT(SS) Soft-start time From VOUT ramp starting to VOUT =95%, default setting 1.6 ms
tINT(SSDLY) Internal soft-start delay time From VVREF = 2 V to VOUT is ready to ramp up 260 µs
tPGDDLY PGOOD startup delay time At external tracking, the time from VOUT is ready to ramp up 8 ms
tPGDPDLYH PGOOD high propagation delay time 50 mV over drive, rising edge 0.8 1 1.2 ms
tPGDPDLYL PGOOD low propagation delay time 50 mV over drive, falling edge 10 µs
tOVPDLY OVP delay time Time from the VOUT pin out of +20% of REFIN to OVP fault 10 µs
tUVDLYEN Undervoltage fault enable delay Time from EN_INT going high to undervoltage fault is ready 2 ms
External tracking from VOUT ramp starts 8
tUVPDLY UVP delay time Time from the VOUT pin out of –32% of REFIN to UVP fault 256 µs
LOGIC PINS: I/O VOLTAGE AND CURRENT
PGOOD pull-down voltage PGOOD low impedance, ISINK = 4 mA, VV5IN = 4.5 V 0.3 V
PGOOD leakage current PGOOD high impedance, forced to 5.5 V –1 0 1 µA
EN logic high EN, VCCP logic 2 V
EN logic low EN, VCCP logic 0.5 V
EN input current 1 µA
MODE threshold voltage(2) Threshold 1 80 130 180 mV
Threshold 2 200 250 300
Threshold 3 370 420 470
Threshold 4 550 600 650
Threshold 5 830 880 930
Threshold 6 1200 1250 1300
Threshold 7 1765 1800 1850
MODE current 15 µA
(1) Ensured by design, not production tested.
(2) See Table 1 for descriptions of MODE parameters.
(3) If V5IN is higher than 1.5 V, PGOOD is valid regardless of the voltage applied at VIN. This is based on bench testing.

6.6 Typical Characteristics

Characterization data tested using the TPS53317AEVM-726 where the external tracking input sets the output voltage and operates in non-droop mode. See SLUUBD2 for detailed configuration.
TPS53317A C001_SLUSAK4.png
Figure 1. Efficiency vs. Output Current
TPS53317A C002_SLUSAK4.png
Figure 3. Efficiency vs. Output Current
TPS53317A C003_SLUSAK4.png
Figure 5. Efficiency vs. Output Current
TPS53317A C007_SLUSAK4.png
Figure 7. Load Regulation
TPS53317A C008_SLUSAK4.png
Figure 9. Load Regulation
TPS53317A C009_SLUSAK4.png
Figure 11. Load Regulation
TPS53317A efficiency_lusak4.png
VIN = 1.5 V VOUT = 0.75 V
Figure 13. Efficiency vs Output Current
TPS53317A C013_SLUSAK4.png
Figure 15. Efficiency vs. Output Current
TPS53317A C004_SLUSAK4.png
Figure 2. Efficiency vs. Output Current
TPS53317A C005_SLUSAK4.png
Figure 4. Efficiency vs. Output Current
TPS53317A C006_SLUSAK4.png
Figure 6. Efficiency vs. Output Current
TPS53317A C010_SLUSAK4.png
Figure 8. Load Regulation
TPS53317A C011_SLUSAK4.png
Figure 10. Load Regulation
TPS53317A C012_SLUSAK4.png
Figure 12. Load Regulation
TPS53317A loadreg_lusak4.png
VIN = 1.5 V VOUT = 0.75 V
Figure 14. Load Regulation
TPS53317A D101_SLUSC63.gif
TA = 25°C IOUT = 2 A
Figure 16. Switching Frequency vs. Input Voltage