SLUSCJ3A April   2016  – June 2016 TPS53632G

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
  7. Timing Requirements
  8. Switching Characteristics
  9. Typical Characteristics (Half-Bridge Operation)
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1  Current Sensing
      2. 10.3.2  Load Transients
      3. 10.3.3  PWM and SKIP Signals
      4. 10.3.4  5-V, 3.3-V and 1.8-V Undervoltage Lockout (UVLO)
      5. 10.3.5  Output Undervoltage Protection (UVP)
      6. 10.3.6  Overcurrent Protection (OCP)
      7. 10.3.7  Overvoltage Protection
      8. 10.3.8  Analog Current Monitor, IMON and Corresponding Digital Output Current
      9. 10.3.9  Addressing
      10. 10.3.10 I2C Interface Operation
        1. 10.3.10.1 Key for Protocol Examples
        2. 10.3.10.2 Protocol Examples
      11. 10.3.11 Start-Up Sequence
      12. 10.3.12 Power Good Operation
      13. 10.3.13 Fault Behavior
    4. 10.4 Device Functional Modes
      1. 10.4.1 PWM Operation
    5. 10.5 Configuration and Programming
      1. 10.5.1 Operating Frequency
      2. 10.5.2 Overcurrent Protection (OCP) Level
      3. 10.5.3 IMON Gain
      4. 10.5.4 Slew Rate
      5. 10.5.5 Base Address
      6. 10.5.6 Ramp Selection
      7. 10.5.7 Active Phases
    6. 10.6 Register Maps
      1. 10.6.1 Voltage Select Register (VSR) (00h)
      2. 10.6.2 IMON Register (03h)
      3. 10.6.3 VMAX Register (04h)
      4. 10.6.4 Power State Register (06h)
      5. 10.6.5 SLEW Register (07h)
      6. 10.6.6 Lot Code Registers (10-13h)
      7. 10.6.7 Fault Register (14h)
  11. 11Applications and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 D-CAP+™ Half-Bridge Application
        1. 11.2.1.1 Design Requirements
        2. 11.2.1.2 Detailed Design Procedure
          1. 11.2.1.2.1 Step 1: Select Switching Frequency
          2. 11.2.1.2.2 Step 2: Set The Slew Rate
          3. 11.2.1.2.3 Step 3: Determine Inductor Value And Choose Inductor
          4. 11.2.1.2.4 Step 4: Determine Current Sensing Method
          5. 11.2.1.2.5 Step 5: DCR Current Sensing
          6. 11.2.1.2.6 Step 6: Select OCP Level
          7. 11.2.1.2.7 Step 7: Set the Load-Line Slope
          8. 11.2.1.2.8 Step 8: Current Monitor (IMON) Setting
        3. 11.2.1.3 Application Performance Plots
        4. 11.2.1.4 Loop Compensation for Zero Load-Line
  12. 12Power Supply Recommendations
  13. 13 Layout
    1. 13.1 Layout Guidelines
      1. 13.1.1 PCB Layout
      2. 13.1.2 Current Sensing Lines
      3. 13.1.3 Feedback Voltage Sensing Lines
      4. 13.1.4 PWM And SKIP Lines
        1. 13.1.4.1 Minimize High Current Loops
      5. 13.1.5 Power Chain Symmetry
      6. 13.1.6 Component Location
      7. 13.1.7 Grounding Recommendations
      8. 13.1.8 Decoupling Recommendations
      9. 13.1.9 Conductor Widths
    2. 13.2 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Trademarks
    2. 14.2 Electrostatic Discharge Caution
    3. 14.3 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

8 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tOFF(min) Controller minimum OFF time Fixed value 20 ns
tON(min) Controller minimum ON time RCF = 150 kΩ, VVIN = 20 V, VVFB = 0 V 20
TIMERS: SLEW RATE, ADDR, SLEEP EXIT, ON TIME AND I/O TIMING
tSTART-CB Cold boot time(1) VBOOT > 0V , EN = high, CREF = 0.33 µF 1.2 ms
tSTBY-E Standby exit time(3) VVID = 1.28 V, RSLEW = 39 kΩ 250 µs
SLSET Slew rate setting for VID change RSLEW = 20 kΩ 6 mV/µs
RSLEW = 24 kΩ 12
RSLEW = 30 kΩ 18
RSLEW = 39 kΩ 24
RSLEW = 56 kΩ 30
SLSTART(2) Slew rate setting for start-up EN goes high, RSLEW = 39 kΩ 12 mV/µs
ADDR Address setting 3 LSB of I2C address VSLEWA ≤ 0.30 V (Addr = 100 0xxx) 000b
0.75 V ≤ VSLEWA ≤ 0.85 V 011b
1.15 V ≤ VSLEWA ≤ 1.25 V 101b
tPGDDGLTO PGOOD deglitch time (over)(4) 1 µs
tPGDDGLTU PGOOD deglitch time (under)(5) 31
tON On time RCF = 20 kΩ 295 ns
RCF = 24 kΩ, VVIN = 12 V, VVFB = 1 V, fSW = 400 kHz 230
RCF = 39 kΩ, VVIN = 12 V, VVFB = 1 V, fSW = 600 kHz 164
RCF = 75 kΩ, VVIN = 12 V, VVFB = 1 V, fSW = 800 kHz 140
RCF = 150 kΩ, VVIN = 12 V, VVFB = 1 V, fSW = 1 MHz 128
PWM AND SKIP OUTPUTS
tP-S_H-L(2) PWMx/SKIP H-L transition time 10% to 90%, both edges 7 20 ns
PROTECTION: OVP, UVP, PGOOD AND THERMAL SHUTDOWN
tPG2 PGOOD low Low state time after EN goes low. 225 250 275 µs
(1) Cold boot time is defined as the time from UVLO detection to VOUT ramp.
(2) Specified by design. Not production tested.
(3) Standby exit time is defined as the time from EN assertion until PGOOD goes high
(4) PGOOD deglitch time (over) is defined as the time from when the VFB pin rises above the 250-mV VDAC boundary to when the PGOOD pin goes low.
(5) PGOOD deglitch time (under) is defined as the time from when the VFB pin falls below the –300-mV VDAC boundary to when the PGOOD pin goes low.