SNVSAZ4A February   2021  – March 2021 TPS541620

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Fixed-Frequency, Internally Compensated Advanced-Current-Mode Control
      2. 7.3.2  Enable and UVLO
      3. 7.3.3  Internal LDO
      4. 7.3.4  Pre-biased Output Start-up
      5. 7.3.5  Current Sharing
      6. 7.3.6  Frequency Selection and Minimum On-Time and Off-Time
      7. 7.3.7  Ramp Compensation Selection
      8. 7.3.8  Soft Start
      9. 7.3.9  Remote Sense Function
      10. 7.3.10 Adjustable Output Voltage
      11. 7.3.11 Power Good
      12. 7.3.12 Overcurrent Protection
      13. 7.3.13 Overvoltage and Undervoltage Protection
      14. 7.3.14 Overtemperature Protection
      15. 7.3.15 Frequency Synchronization
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operation Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application - Dual Independent Outputs
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Switching Frequency
        2. 8.2.2.2  Output Inductor Selection
        3. 8.2.2.3  Output Capacitor
        4. 8.2.2.4  Input Capacitor
        5. 8.2.2.5  Output Voltage Resistors Selection
        6. 8.2.2.6  Adjustable Undervoltage Lockout
        7. 8.2.2.7  Bootstrap Capacitor Selection
        8. 8.2.2.8  BP5 Capacitor Selection
        9. 8.2.2.9  PGOOD Pullup Resistor
        10. 8.2.2.10 Current Limit
        11. 8.2.2.11 Soft-Start Time Selection
        12. 8.2.2.12 MODE1 and MODE2 Pins
      3. 8.2.3 Application Curves
      4. 8.2.4 Typical Application - 2-Phase Operation
        1. 8.2.4.1 Design Requirements
        2. 8.2.4.2 Detailed Design Procedure
          1. 8.2.4.2.1  Switching Frequency
          2. 8.2.4.2.2  Output Inductor Selection
          3. 8.2.4.2.3  Output Capacitor
          4. 8.2.4.2.4  Input Capacitor
          5. 8.2.4.2.5  Output Voltage Resistors Selection
          6. 8.2.4.2.6  Adjustable Undervoltage Lockout
          7. 8.2.4.2.7  Bootstrap Capacitor Selection
          8. 8.2.4.2.8  BP5 Capacitor Selection
          9. 8.2.4.2.9  PGOOD Pullup Resistor
          10. 8.2.4.2.10 Current Limit
          11. 8.2.4.2.11 Soft-Start Time Selection
          12. 8.2.4.2.12 MODE1 Pin
        3. 8.2.4.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
      1. 10.2.1 Thermal Performance
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Adjustable Output Voltage

The voltage regulation loop in the TPS541620 regulates the FB pin voltage to be equal to the internal reference voltage. The output voltage of the TPS541620 is set by a resistor divider to program the ratio from VOUT to VFB. The resistor divider is connected from the output to ground with the mid-point connecting to the FB pin (VFB = 0.5 V).

The internal voltage reference and feedback loop produce precise voltage regulation over temperature. TI recommends using divider resistors with 1% tolerance or better, and with a temperature coefficient of 100 ppm or lower for increased DC accuracy over temperature. Typically, RFBT (top feedback resistor) equal to 10 kΩ to 100 kΩ is recommended. Larger RFBT and RFBB (bottom feedback resistor) values reduce the quiescent current going through the divider, which helps maintain high efficiency at very light load. However, larger divider values also make the feedback path more susceptible to noise. RFBB can be calculated by Equation 2.

Equation 2. GUID-20200915-CA0I-TV41-WKJJ-WP851HRSLDTV-low.gif