SLVS996D September   2009  – September 2015 TPS54262-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 DC Electrical Characteristics
    6. 6.6 DC Electrical Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Unregulated Input Voltage
      2. 7.3.2  Regulated Output Voltage
      3. 7.3.3  Regulation and Feedback Voltage
      4. 7.3.4  Enable and Shutdown
      5. 7.3.5  Soft Start
      6. 7.3.6  Oscillator Frequency
        1. 7.3.6.1 Selecting the Switching Frequency
        2. 7.3.6.2 Synchronization With External Clock
      7. 7.3.7  Slew Rate Control
      8. 7.3.8  Reset
      9. 7.3.9  Reset Delay
      10. 7.3.10 Reset Threshold and Undervoltage Threshold
      11. 7.3.11 Overvoltage Supervisor
      12. 7.3.12 Noise Filter on RST_TH and OV_TH Terminals
      13. 7.3.13 Boot Capacitor
      14. 7.3.14 Short Circuit Protection
      15. 7.3.15 Overcurrent Protection
      16. 7.3.16 Internal Undervoltage Lockout (UVLO)
      17. 7.3.17 Thermal Shutdown (TSD)
      18. 7.3.18 Loop Control Frequency Compensation - Type 3
        1. 7.3.18.1 Bode Plot of Converter Gain
    4. 7.4 Device Functional Modes
      1. 7.4.1 Active Mode Continuous Conduction Mode (CCM)
      2. 7.4.2 Active Mode Discontinuous Conduction Mode (DCM)
      3. 7.4.3 Pulse Skip Mode (PSM)
      4. 7.4.4 Low-Power Mode (LPM)
      5. 7.4.5 Hysteretic Mode
      6. 7.4.6 Output Tolerances in Different Modes of Operation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Component Selection
          1. 8.2.2.1.1  Input Capacitors (C1, C11)
          2. 8.2.2.1.2  Output Capacitor (C4, C12)
          3. 8.2.2.1.3  Soft-Start Capacitor (C6)
          4. 8.2.2.1.4  Bootstrap Capacitor (C3)
          5. 8.2.2.1.5  Power-On Reset Delay (PORdly) Capacitor (C2)
          6. 8.2.2.1.6  Output Inductor (L1)
          7. 8.2.2.1.7  Flyback Schottky Diode (D2)
          8. 8.2.2.1.8  Resistor to Set Slew Rate (R7)
          9. 8.2.2.1.9  Resistor to Select Switching Frequency (R8)
          10. 8.2.2.1.10 Resistors to Select Output Voltage (R4, R5)
          11. 8.2.2.1.11 Resistors to Set Undervoltage, Overvoltage, and Reset Thresholds (R1, R2, R3)
            1. 8.2.2.1.11.1 Overvoltage Resistor Selection
            2. 8.2.2.1.11.2 Reset Threshold Resistor Selection
            3. 8.2.2.1.11.3 Undervoltage Threshold for Low-Power Mode and Load Transient Operation
          12. 8.2.2.1.12 Low-Power Mode (LPM) Threshold
          13. 8.2.2.1.13 Enable Pin Pull-Up Resistor (R11) and Voltage Divider Resistor (R10)
          14. 8.2.2.1.14 Pull-Up Resistor (R12) at RST Pin
          15. 8.2.2.1.15 Type 3 Compensation Components (R5, R6, R9, C5, C7, C8)
            1. 8.2.2.1.15.1 Resistors
            2. 8.2.2.1.15.2 Capacitors
          16. 8.2.2.1.16 Noise Filter on RST_TH and OV_TH Terminals (C9, C10)
        2. 8.2.2.2 Design Example 1
          1. 8.2.2.2.1  Calculate the Switching Frequency (fsw)
          2. 8.2.2.2.2  Calculate the Ripple Current (IRipple)
          3. 8.2.2.2.3  Calculate the Inductor Value (L1)
          4. 8.2.2.2.4  Calculate the Output Capacitor and ESR (C4)
            1. 8.2.2.2.4.1 Calculate capacitance
            2. 8.2.2.2.4.2 Calculate ESR
          5. 8.2.2.2.5  Calculate the Feedback Resistors (R4, R5)
          6. 8.2.2.2.6  Calculate Type 3 Compensation Components
            1. 8.2.2.2.6.1 Resistances (R6, R9)
            2. 8.2.2.2.6.2 Capacitors (C5, C8, C7)
          7. 8.2.2.2.7  Calculate Soft-Start Capacitor (C6)
          8. 8.2.2.2.8  Calculate Bootstrap Capacitor (C3)
          9. 8.2.2.2.9  Calculate Power-On Reset Delay Capacitor (C2)
          10. 8.2.2.2.10 Calculate Input Capacitor (C1, C11)
          11. 8.2.2.2.11 Calculate Resistors to Control Slew Rate (R7)
          12. 8.2.2.2.12 Resistors to Select Undervoltage, Overvoltage and Reset Threshold Values (R1, R2, R3)
          13. 8.2.2.2.13 Diode D1 and D2 Selection
          14. 8.2.2.2.14 Noise Filter on RST_TH and OV_TH Terminals (C9 and C10)
          15. 8.2.2.2.15 Power Budget and Temperature Estimation
        3. 8.2.2.3 Design Example 2
          1. 8.2.2.3.1  Calculate the Switching Frequency (fsw)
          2. 8.2.2.3.2  Calculate the Ripple Current (IRipple)
          3. 8.2.2.3.3  Calculate the Inductor Value (L1)
          4. 8.2.2.3.4  Calculate the Output Capacitor and ESR (C4, C12)
            1. 8.2.2.3.4.1 Calculate Capacitance
            2. 8.2.2.3.4.2 Calculate ESR
          5. 8.2.2.3.5  Calculate the Feedback Resistors (R4, R5)
          6. 8.2.2.3.6  Calculate Type 3 Compensation Components
            1. 8.2.2.3.6.1 Resistances (R6, R9)
            2. 8.2.2.3.6.2 Capacitors (C5, C8, C7)
          7. 8.2.2.3.7  Calculate Soft-Start Capacitor (C6)
          8. 8.2.2.3.8  Calculate Bootstrap Capacitor (C3)
          9. 8.2.2.3.9  Calculate Power-On Reset Delay Capacitor (C2)
          10. 8.2.2.3.10 Calculate Input Capacitor (C1, C11)
          11. 8.2.2.3.11 Calculate Resistors to Control Slew Rate (R7)
          12. 8.2.2.3.12 Resistors to Select Undervoltage, Overvoltage and Reset Threshold Values (R1, R2, R3)
          13. 8.2.2.3.13 Diode D1 and D2 Selection
          14. 8.2.2.3.14 Noise Filter on RST_TH and OV_TH Terminals (C9 and C10)
          15. 8.2.2.3.15 Power Budget and Temperature Estimation
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Power Dissipation and Temperature Considerations
  11. 11Device and Documentation Support
    1. 11.1 Community Resource
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Input voltage EN –0.3 60 V
VIN –0.3 60
VReg –0.3 20
LPM –0.3 5.5
OV_TH –0.3 5.5
RST_TH –0.3 5.5
SYNC –0.3 5.5
VSENSE –0.3 5.5
Output voltage BOOT –0.3 65 V
PH DC voltage –0.3 60
DC voltage, TJ = –40°C –0.85
DC voltage, TJ = 125°C –0.5
30-ns Transient Pulse –2
200-ns Transient Pulse –1
RT –0.3 5.5
RST –0.3 5.5
Cdly –0.3 8
SS –0.3 8
COMP –0.3 7
Temperature Operating virtual junction temperature, TJ -40 150 °C
Storage temperature, Tstg –55 165
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1)(2) ±2000 V
Charged device model (CDM), per AEC Q100-011 Corner pins (1, 10, 11, and 20) ±750
Other pins ±750
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
(2) The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VI Unregulated buck supply input voltage (VIN, EN) 3.6 48 V
VReg Regulated output voltage In continuous conduction mode (CCM) 0.9 18 V
Power up in low-power mode (LPM) or discontinuous conduction mode (DCM) 0.9 5.5 V
Bootstrap capacitor (BOOT) 3.6 56 V
Switched outputs (PH) 3.6 48 V
Logic levels (RST, VSENSE, OV_TH, RST_TH, Rslew, SYNC, RT) 0 5.25 V
Logic levels (SS, Cdly, COMP) 0 6.5 V
TA Operating ambient temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) TPS54262-Q1 UNIT
PWP (HTSSOP)
20 PINS
RθJA Junction-to-ambient thermal resistance 36.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 20.9 °C/W
RθJB Junction-to-board thermal resistance 17.9 °C/W
ψJT Junction-to-top characterization parameter 0.5 °C/W
ψJB Junction-to-board characterization parameter 17.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 DC Electrical Characteristics

VIN = 7 V to 48 V, EN = VIN, TJ = –40°C to 150°C (unless otherwise noted)
PARAMETER TEST CONDITIONS TEST(1) MIN TYP MAX UNIT
INPUT POWER SUPPLY
VIN Supply voltage on VIN Normal mode: after initial start-up Info 3.6 48 V
Low-power mode Falling threshold (LPM disabled) 8
Rising threshold (LPM activated) 8.5
High voltage threshold (LPM disabled) 29 31 34
Iq-Normal Quiescent current, normal mode Open loop test – maximum duty cycle
VIN = 7 V to 48 V
PT 5 10 mA
Iq-LPM Quiescent current, low-power mode ILoad < 1 mA, VIN = 12 V TA = 25°C PT 50 70 µA
–40 < TJ < 150°C 75
ILoad < 1 mA, VIN = 24 V TA = 25°C 75
–40 < TJ < 150°C 75
ISD Shutdown current EN = 0 V, device is off TA = 25°C, VIN = 12 V PT 1 4 µA
TRANSITION TIMES (LOW POWER – NORMAL MODES)
td1 Transition delay, normal mode to low-power mode VIN = 12 V, VReg = 5 V, ILoad = 1 A to 1 mA CT 100 µs
td2 Transition delay, low-power mode to normal mode VIN = 12 V, VReg = 5 V ILoad = 1 mA to 1 A CT 5 µs
SWITCH MODE SUPPLY; VReg
VReg Regulator output VSENSE = 0.8 Vref Info 0.9 18 V
VSENSE Feedback voltage VReg = 0.9 V to 18 V (open loop) CT 0.788 0.8 0.812 V
RDS(ON) Internal switch resistance Measured across VIN and PH, ILoad = 500 mA PT 500
ICL Switch current limit, cycle by cycle VIN = 12 V Info 2.5 3.2 4.1 A
tON-Min Duty cycle pulse width Bench CHAR only Info 50 100 150 ns
tOFF-Min Bench CHAR only Info 100 200 250
fsw Switching frequency Set using external resistor on RT pin PT 0.2 2.2 MHz
fsw Internal oscillator frequency tolerance PT –10% 10%
ISink Start-up condition OV_TH = 0 V, VReg = 10 V Info 1 mA
ILimit Prevent overshoot 0 V < OV_TH < 0.8 V, VReg = 10 V Info 80 mA
(1) PT: Production tested
CT: Characterization tested only, not production tested
Info: User information only, not production tested

6.6 DC Electrical Characteristics

VIN = 7 V to 48 V, EN = VIN, TJ = –40°C to 150°C (unless otherwise noted)
PARAMETER TEST CONDITIONS TEST(2) MIN TYP MAX UNIT
ENABLE (EN)
VIL Low input threshold voltage PT 0.7 V
VIH High input threshold voltage PT 1.7 V
Ilkg Leakage current into EN terminal EN = 60 V PT 100 135 µA
EN = 12 V 8 15 µA
RESET DELAY (Cdly)
IO External capacitor charge current EN = high PT 1.4 2 2.6 µA
VThreshold Switching threshold voltage Output voltage in regulation PT 2 V
LOW-POWER MODE (LPM)
VIL Low input threshold voltage VIN = 12 V PT 0.7 V
VIH High input threshold voltage VIN = 12 V PT 1.7 V
Ilkg Leakage current into LPM terminal LPM = 5 V PT 65 95 µA
RESET OUTPUT (RST)
trdly POR delay timer Based on Cdly capacitor PT 3.6 7 ms/nF
VReg_RST Reset threshold voltage for VReg Check RST output PT 0.768 0.832 V
tnRSTdly Filter time Delay before RST is asserted low PT 10 20 35 µs
SOFT START (SS)
ISS Soft-start source current PT 40 50 60 µA
SYNCHRONIZATION (SYNC)
VIL Low input threshold voltage PT 0.7 V
VIH High input threshold voltage PT 1.7 V
Ilkg Leakage current SYNC = 5 V PT 65 95 µA
SYNC (fext) External input clock frequency VIN = 12 V, VReg = 5 V,
180 kHz < fsw < fext < 2 × fsw < 2.2 MHz
CT 180 2200 kHz
SYNCtrans External clock to internal clock No external clock, VIN = 12 V, VReg = 5 V Info 32 µs
SYNCtrans Internal clock to external clock External clock = 1 MHz, VIN = 12 V,
VReg = 5 V
Info 2.5 µs
SYNCCLK Minimum duty cycle CT 30%
SYNCCLK Maximum duty cycle CT 70%
Rslew
IRslew Rslew = 50 kΩ CT 20 µA
IRslew Rslew = 10 kΩ CT 100 µA
OVERVOLTAGE SUPERVISORS (OV_TH)
VReg_OV Threshold voltage for VReg during overvoltage Internal switch is turned off PT 0.768 0.832 V
VReg = 5 V Internal pulldown on VReg, OV_TH = 1 V 70(1) mA
THERMAL SHUTDOWN
TSD Thermal shutdown junction temperature CT 175 °C
THYS Hysteresis CT 30 °C
(1) This is the current flowing into the VReg pin when voltage at OV_TH pin is 1 V.
(2) PT: Production tested
CT: Characterization tested only, not production tested

6.7 Typical Characteristics

Table 1. Table of Graphs

FIGURE
Efficiency vs Load Current for Different Rslew Resistors Figure 1
Efficiency vs Load Current for Different Vin Figure 2
LPM, Quiescent Current Variation With Temperature Figure 3
Shutdown Current Variation With Temperature Figure 4
Output Voltage vs Input Voltage for Different Load Currents Figure 5
Input Voltage vs Load Current During Power Up and Power Down Figure 6
Internal Reference Voltage Figure 7
Voltage Drop ON Rslew For Current Reference (Slew Rate / Rslew) Figure 8
Current Consumption With Temperature Figure 9
TPS54262-Q1 eff_il_lvs996.gif
Figure 1. Efficiency vs Load Current for Different Rslew Resistors
TPS54262-Q1 g_ip_lpm_temp_lvs996.gif
Figure 3. LPM, Quiescent Current Variation With Temperature
TPS54262-Q1 g_vout_dropout_lvs996.gif Figure 5. Output Voltage vs Input Voltage for Different Load Currents
TPS54262-Q1 eff3_il_lvs996.gif
Figure 2. Efficiency vs Load Current for Different Vin
TPS54262-Q1 g_isd_temp_lvs996.gif
Figure 4. Shutdown Current Variation With Temperature
TPS54262-Q1 dov_il_lvs996.gif Figure 6. Input Voltage vs Load Current During Power Up and Power Down

NOTE

Figure 5 shows the dropout operation during low input conditions

Figure 6 shows the following plots

  • Power up (Start-up): Input voltage required to achieve the 5-V regulation during power up over the range of load currents
  • Power down (Tracking): Input voltage at which the output voltage drops approximately by 0.7 V from the programmed 5-V regulated voltage

TPS54262-Q1 iref_ta_lvs996.gif
Figure 7. Internal Reference Voltage
TPS54262-Q1 cur_ta_lvs996.gif
Figure 9. Current Consumption With Temperature
TPS54262-Q1 sr_ta_lvs996.gif
Figure 8. Voltage Drop ON Rslew for Current Reference (Slew Rate / Rslew)