SLUSCV2A June   2017  – April 2021 TPS54308

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Fixed-Frequency PWM Control
      2. 7.3.2  Force Continuous Conduction Mode (FCCM)
      3. 7.3.3  Error Amplifier
      4. 7.3.4  Slope Compensation and Output Current
      5. 7.3.5  Enable and Adjusting Undervoltage Lockout
      6. 7.3.6  Safe Start-Up into Pre-Biased Outputs
      7. 7.3.7  Voltage Reference
      8. 7.3.8  Adjusting Output Voltage
      9. 7.3.9  Internal Soft Start
      10. 7.3.10 Bootstrap Voltage (BOOT)
      11. 7.3.11 Overcurrent Protection
        1. 7.3.11.1 High-Side MOSFET Overcurrent Protection
        2. 7.3.11.2 Low-Side MOSFET Overcurrent Protection
      12. 7.3.12 Output Overvoltage Protection (OVP)
      13. 7.3.13 Thermal Shutdown
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 TPS54308 8-V to 28-V Input, 5-V Output Converter
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
        1. 8.2.3.1 Custom Design With WEBENCH® Tools
        2. 8.2.3.2 Input Capacitor Selection
        3. 8.2.3.3 Bootstrap Capacitor Selection
        4. 8.2.3.4 Output Voltage Set Point
        5. 8.2.3.5 Undervoltage Lockout Set Point
        6. 8.2.3.6 Output Filter Components
          1. 8.2.3.6.1 Inductor Selection
          2. 8.2.3.6.2 Output Capacitor Selection
          3. 8.2.3.6.3 Feedforward Capacitor
      4. 8.2.4 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design With WEBENCH® Tools
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Low-Side MOSFET Overcurrent Protection

While the low-side MOSFET is turned on, the conduction current is monitored by the internal circuitry. During normal operation, the low-side MOSFET sources current to the load. At the end of every clock cycle, the low-side MOSFET sourcing current is compared to the internally set low-side sourcing current-limit. When the inductor valley current is exceeded by the low-side source current limit, the high-side MOSFET does not turn on and the low-side MOSFET stays on for the next cycle. The high-side MOSFET turns on again when the inductor valley current is below the low-side sourcing current-limit at the start of a cycle as shown in Figure 7-2.

Furthermore, if an output overload condition occurs for more than the hiccup wait time, which is programmed for 512 switching cycles, the device shuts down and restarts after the hiccup time of 16384 cycles. Hiccup mode helps reduce the device power dissipation under severe overcurrent conditions.

The low-side MOSFET can also sink current from load. If the low-side sinking current limit is exceeded, the low-side MOSFET is turned off immediately for the rest of that clock cycle. In this scenario, both MOSFETs are off until the start of the next cycle.

GUID-0FD67A4F-EBD9-4FE9-ADD7-D125F884E22B-low.gifFigure 7-2 Overcurrent Protection for Both MOSFETs