SLVS834B July   2008  – June 2019 TPS5450-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic and Efficiency Curve
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Recommended Operating Conditions
    3. 6.3 Thermal Information
    4. 6.4 Dissipation Ratings
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Oscillator Frequency
      2. 7.3.2  Voltage Reference
      3. 7.3.3  Enable (ENA) and Internal Slow Start
      4. 7.3.4  Undervoltage Lockout (UVLO)
      5. 7.3.5  Output Feedback (VSENSE) and Internal Compensation
      6. 7.3.6  Voltage Feedforward
      7. 7.3.7  Pulse-Width-Modulation (PWM) Control
      8. 7.3.8  Overcurrent Limiting
      9. 7.3.9  Overvoltage Protection
      10. 7.3.10 Thermal Shutdown
  8. Application Information
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design With WEBENCH® Tools
        2. 8.2.2.2  Boost Capacitor (BOOT)
        3. 8.2.2.3  Switching Frequency
        4. 8.2.2.4  Input Capacitors
        5. 8.2.2.5  Output Filter Components
          1. 8.2.2.5.1 Inductor Selection
          2. 8.2.2.5.2 Capacitor Selection
        6. 8.2.2.6  Output Voltage Setpoint
        7. 8.2.2.7  Boot Capacitor
        8. 8.2.2.8  Catch Diode
        9. 8.2.2.9  Output Voltage Limitations
        10. 8.2.2.10 Internal Compensation Network
      3. 8.2.3 Application Curves
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Examples
    3. 9.3 Thermal Calculations
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Development Support
      1. 10.2.1 Custom Design With WEBENCH® Tools
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Community Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

Connect a low ESR ceramic bypass capacitor to the VIN pin. Take care to minimize the loop area formed by the bypass capacitor connections, the VIN pin, and the TPS5450-Q1 ground pin. The best way to do this is to extend the top-side ground area from under the device adjacent to the VIN trace, and place the bypass capacitor as close as possible to the VIN pin. The minimum recommended bypass capacitance is 4.7-μF ceramic with a X5R or X7R dielectric.

There must be a ground area on the top layer directly underneath the IC, with an exposed area for connection to the PowerPAD. Use vias to connect this ground area to any internal ground planes. Use additional vias at the ground side of the input and output filter capacitors as well. Tie the GND pin to the PCB ground by connecting it to the ground area under the device as shown below.

Route the PH pin to the output inductor, catch diode, and boot capacitor. Because the PH connection is the switching node, locate the inductor very close to the PH pin and the area of the PCB conductor minimized to prevent excessive capacitive coupling. The catch diode should also be placed close to the device to minimize the output current loop area. Connect the boot capacitor between the phase node and the BOOT pin as shown. Keep the boot capacitor close to the IC and minimize the conductor trace lengths. The component placements and connections shown work well, but other connection routings also may be effective.

Connect the output filter capacitor(s) as shown between the VOUT trace and GND. It is important to keep the loop formed by the PH pin, LOUT, COUT, and GND as small as is practical.

Connect the VOUT trace to the VSENSE pin using the resistor divider network to set the output voltage. Do not route this trace too close to the PH trace. Due to the size of the IC package and the device pinout, the trace may need to be routed under the output capacitor. Alternately, the routing may be done on an alternate layer if a trace under the output capacitor is not desired.

If using the grounding scheme shown in Figure 17, use a via connection to a different layer to route to the ENA pin.