SLUSF22 November   2024 TPS54538

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Fixed Frequency Peak Current Mode
      2. 6.3.2  Mode Selection
      3. 6.3.3  Voltage Reference
      4. 6.3.4  Output Voltage Setting
      5. 6.3.5  Switching Frequency Selection / Synchronization
      6. 6.3.6  Phase Shift
      7. 6.3.7  Enable and Adjusting Undervoltage Lockout
      8. 6.3.8  External Soft Start and Prebiased Soft Start
      9. 6.3.9  Power Good
      10. 6.3.10 Minimum On Time, Minimum Off Time, and Frequency Foldback
      11. 6.3.11 Frequency Spread Spectrum
      12. 6.3.12 Overvoltage Protection
      13. 6.3.13 Overcurrent and Undervoltage Protection
      14. 6.3.14 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 Modes Overview
      2. 6.4.2 Heavy Load Operation
      3. 6.4.3 Pulse Frequency Modulation
      4. 6.4.4 Forced Continuous Conduction Modulation
      5. 6.4.5 Dropout Operation
      6. 6.4.6 Minimum On-Time Operation
      7. 6.4.7 Shutdown Mode
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Custom Design With WEBENCH® Tools
        2. 7.2.2.2 Output Voltage Resistors Selection
        3. 7.2.2.3 Choosing Switching Frequency
        4. 7.2.2.4 Soft-Start Capacitor Selection
        5. 7.2.2.5 Output Inductor Selection
        6. 7.2.2.6 Output Capacitor Selection
        7. 7.2.2.7 Input Capacitor Selection
        8. 7.2.2.8 Feedforward Capacitor CFF Selection
        9. 7.2.2.9 Maximum Ambient Temperature
      3. 7.2.3 Application Curves
    3. 7.3 Best Design Practices
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Third-Party Products Disclaimer
      2. 8.1.2 Development Support
        1. 8.1.2.1 Custom Design With WEBENCH® Tools
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

External Soft Start and Prebiased Soft Start

When the TPS54538 is configured to the SS function by the MODE pin, the SS/PG pin of TPS54538 is used to minimize inrush current when driving capacitive load. The devices use the lower voltage of the internal voltage reference, VREF, or the SS/PG pin voltage as the reference voltage and regulates the output accordingly. A capacitor on the SS/PG pin to ground implements a soft-start time. The device has an internal pullup current source that charges the external soft-start capacitor. Use Equation 7 to calculate the soft-start time (tSS, 0% to 100%) and soft-start capacitor (CSS).

Equation 7. t S S = C S S × V R E F I S S

where

  • VREF is 0.6V (the internal reference voltage).
  • ISS is 5.5µA (typical), the internal pullup current.

If the output capacitor is prebiased at start-up, the devices initiate switching and start ramping up only after the internal reference voltage becomes greater than the feedback voltage, VFB. This scheme makes sure that the converters ramp up smoothly into regulation point. A resistor divider connected to the SS/PG pin can implement voltage tracking of the other power rail.