SLVSBY9E August   2013  – May 2019 TPS54618-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Efficiency vs Output Current
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Fixed Frequency PWM Control
      2. 7.3.2  Slope Compensation and Output Current
      3. 7.3.3  Bootstrap Voltage (Boot) and Low Dropout Operation
      4. 7.3.4  Error Amplifier
      5. 7.3.5  Voltage Reference
      6. 7.3.6  Adjusting the Output Voltage
      7. 7.3.7  Enable and Adjusting Undervoltage Lockout
      8. 7.3.8  Soft-Start Pin
      9. 7.3.9  Sequencing
      10. 7.3.10 Constant Switching Frequency and Timing Resistor (RT/CLK Pin)
      11. 7.3.11 Overcurrent Protection
      12. 7.3.12 Frequency Shift
      13. 7.3.13 Reverse Overcurrent Protection
      14. 7.3.14 Synchronize Using the RT/CLK Pin
      15. 7.3.15 Power Good (PWRGD Pin)
      16. 7.3.16 Overvoltage Transient Protection
      17. 7.3.17 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Simple Small Signal Model for Peak Current Mode Control
      2. 7.4.2 Small Signal Model for Frequency Compensation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Step One: Select the Switching Frequency
        3. 8.2.2.3 Step Two: Select the Output Inductor
        4. 8.2.2.4 Step Three: Choose the Output Capacitor
        5. 8.2.2.5 Step Four: Select the Input Capacitor
        6. 8.2.2.6 Step Five: Choose the Soft-Start Capacitor
        7. 8.2.2.7 Step Six: Select the Bootstrap Capacitor
        8. 8.2.2.8 Step Eight: Select Output Voltage and Feedback Resistors
          1. 8.2.2.8.1 Output Voltage Limitations
        9. 8.2.2.9 Step Nine: Select Loop Compensation Components
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Power Dissipation Estimate
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Developmental Support
      2. 11.1.2 Custom Design With WEBENCH® Tools
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Dissipation Estimate

The following formulas show how to estimate the IC power dissipation under continuous conduction mode (CCM) operation. The power dissipation of the IC (Ptot) includes conduction loss (Pcon), dead time loss (Pd), switching loss (Psw), gate drive loss (Pgd), and supply current loss (Pq).

Equation 42. Pcon = Io2 × RDS_on_Temp

where

  • IO is the output current (A).
  • RDS_on_Temp is the ON-resistance of the high-side MOSFET with given temperature (Ω).
Equation 43. Pd = ƒsw × Io × 0.7 × 40 × 10–9

where

  • IO is the output current (A).
  • ƒsw is the switching frequency (Hz).
Equation 44. Psw = 1/2 × Vin × Io × ƒsw× 13 × 10–9

where

  • IO is the output current (A).
  • Vin is the input voltage (V).
  • ƒsw is the switching frequency (Hz).
Equation 45. Pgd = 2 × Vin × ƒsw× 10 × 10–9

where

  • Vin is the input voltage (V).
  • ƒsw is the switching frequency (Hz).
Equation 46. Pq = Vin × 515 × 10–6

where

  • Vin is the input voltage (V).

So

Equation 47. Ptot = Pcon + Pd + Psw + Pgd + Pq

where

  • Ptot is the total device power dissipation (W).

For given TA:

Equation 48. TJ = TA + Rth × Ptot

where

  • TA is the ambient temperature (°C).
  • TJ is the junction temperature (°C).
  • Rth is the thermal resistance of the package (°C/W).

For given TJmax = 150°C:

Equation 49. TAmax = TJmax – Rth × Ptot

where

  • Ptot is the total device power dissipation (W).
  • Rth is the thermal resistance of the package (°C/W).
  • TJmax is maximum junction temperature (°C).
  • TAmax is maximum ambient temperature (°C).

There are additional power losses in the regulator circuit due to the inductor AC and DC losses and trace resistance that impact the overall efficiency of the regulator.