SLVSDC9B November   2016  – November 2019 TPS54824

PRODUCTION DATA.  

  1. Features
  2. Applications
    1.     Simplified Schematic
  3. Description
    1.     Efficiency
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Timing Requirements
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Fixed Frequency PWM Control
      2. 7.3.2  Continuous Conduction Mode Operation (CCM)
      3. 7.3.3  VIN Pins and VIN UVLO
      4. 7.3.4  Voltage Reference and Adjusting the Output Voltage
      5. 7.3.5  Error Amplifier
      6. 7.3.6  Enable and Adjustable UVLO
      7. 7.3.7  Soft Start and Tracking
      8. 7.3.8  Safe Start-up into Pre-Biased Outputs
      9. 7.3.9  Power Good
      10. 7.3.10 Sequencing (SS/TRK)
      11. 7.3.11 Adjustable Switching Frequency (RT Mode)
      12. 7.3.12 Synchronization (CLK Mode)
      13. 7.3.13 Bootstrap Voltage and 100% Duty Cycle Operation (BOOT)
      14. 7.3.14 Output Overvoltage Protection (OVP)
      15. 7.3.15 Overcurrent Protection
        1. 7.3.15.1 High-side MOSFET Overcurrent Protection
        2. 7.3.15.2 Low-side MOSFET Overcurrent Protection
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Switching Frequency
        2. 8.2.2.2  Output Inductor Selection
        3. 8.2.2.3  Output Capacitor
        4. 8.2.2.4  Input Capacitor
        5. 8.2.2.5  Output Voltage Resistors Selection
        6. 8.2.2.6  Soft-start Capacitor Selection
        7. 8.2.2.7  Undervoltage Lockout Set Point
        8. 8.2.2.8  Bootstrap Capacitor Selection
        9. 8.2.2.9  PGOOD Pull-up Resistor
        10. 8.2.2.10 Compensation
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Alternate Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

  • VIN and PGND traces should be as wide as possible to reduce trace impedance and improve heat dissipation.
  • At least 1 µF of input capacitance is required on both VIN pins of the IC and must be placed as close as possible to the IC. The input capacitors must connect directly to the adjacent PGND pins.
  • It is recommended to use a ground plane directly below the IC to connect the PGND pins on both sides of the IC together.
  • The PGND trace between the output capacitor and the PGND pin should be as wide as possible to minimize its trace impedance.
  • Provide sufficient vias for the input capacitor and output capacitor.
  • Keep the SW trace as physically short and wide as practical to minimize radiated emissions.
  • A separate VOUT path should be connected to the upper feedback resistor.
  • Voltage feedback loop should be placed away from the high-voltage switching trace. It is preferable to use ground copper near it as a shield.
  • The trace connected to the FB node should be as small as possible to avoid noise coupling.
  • Place components connected to the RT/CLK, FB, COMP and SS/TRK pins as close to the IC as possible and minimize traces connected to these pins to avoid noise coupling.
  • AGND must be connected to PGND on the PCB. Connect AGND to PGND in a region away from switching currents.