SNVSB02C March   2020  – July 2021 TPS54JA20

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Internal VCC LDO And Using External Bias On VCC Pin
      2. 7.3.2  Enable
      3. 7.3.3  Output Voltage Setting
        1. 7.3.3.1 Remote Sense
      4. 7.3.4  Internal Fixed Soft Start and External Adjustable Soft Start
      5. 7.3.5  External REFIN For Output Voltage Tracking
      6. 7.3.6  Frequency and Operation Mode Selection
      7. 7.3.7  D-CAP3 Control
      8. 7.3.8  Low-side FET Zero-Crossing
      9. 7.3.9  Current Sense and Positive Overcurrent Protection
      10. 7.3.10 Low-side FET Negative Current Limit
      11. 7.3.11 Power Good
      12. 7.3.12 Overvoltage and Undervoltage Protection
      13. 7.3.13 Out-Of-Bounds (OOB) Operation
      14. 7.3.14 Output Voltage Discharge
      15. 7.3.15 UVLO Protection
      16. 7.3.16 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Auto-Skip Eco-mode Light Load Operation
      2. 7.4.2 Forced Continuous-Conduction Mode
      3. 7.4.3 Powering The Device From A 12-V Bus
      4. 7.4.4 Powering The Device From A 3.3-V Bus
      5. 7.4.5 Powering The Device From A Split-rail Configuration
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Output Voltage Setting Point
        2. 8.2.2.2  Choose the Switching Frequency and the Operation Mode
        3. 8.2.2.3  Choose the Inductor
        4. 8.2.2.4  Set the Current Limit (TRIP)
        5. 8.2.2.5  Choose the Output Capacitor
        6. 8.2.2.6  Choose the Input Capacitors (CIN)
        7. 8.2.2.7  Soft Start Capacitor (SS/REFIN Pin)
        8. 8.2.2.8  EN Pin Resistor Divider
        9. 8.2.2.9  VCC Bypass Capacitor
        10. 8.2.2.10 BOOT Capacitor
        11. 8.2.2.11 PGOOD Pullup Resistor
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
      1. 10.2.1 Thermal Performance On TI EVM
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Powering The Device From A Split-rail Configuration

When an external bias, which is at a different level from the main VIN bus, is applied onto the VCC pin, the device can be configured to split-rail by utilizing both the main VIN bus and VCC bias. Connecting a valid VCC bias to VCC pin overrides the internal LDO, thus saves power loss on that linear regulator. This configuration helps to improve overall system level efficiency but requires a valid VCC bias. 3.3-V or 5.0-V rail is the common choice as VCC bias. With a stable VCC bias, the VIN input range under this configuration can be as low as 2.7 V and up to 16 V.

The noise of the external bias affects the internal analog circuitry. To ensure a proper operation, a clean, low-noise external bias, and good local decoupling capacitor from the VCC pin to PGND pin are required. Figure 7-6 shows an example for this split rail configuration.

The VCC external bias current during nominal operation varies with the bias voltage level and also the operating frequency. For example, by setting the device to skip mode, the VCC pins draw less and less current from the external bias when the frequency decreases under light load condition. The typical VCC external bias current under FCCM operation is listed in the Electrical Characteristics to help you prepare the capacity of the external bias.

Under split rail configuration, VIN, VCC bias, and EN are the signals to enable the part. For start-up sequence, it is recommended that at least one of VIN UVLO rising threshold and EN rising threshold is satisfied later than VCC UVLO rising threshold. A practical start-up sequence example is VIN applied first, then the external bias applied, and then EN signal goes high.

GUID-C1D4EB91-37AD-4992-A444-A807ECF14A9F-low.gifFigure 7-6 Split Rail Configuration With External VCC Bias